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Simulation of chromatography processes is time consuming and specially multi component problems. This
paper discusses a MATLAB based simulation toolbox for evaluation of multi component chromatographic
processes. Experiences from simulation studies are summarised in a set of guidelines for chromatography
problems. A set of methods for discretization of chromatography models is compared, including finite
difference, finite element and orthogonal collocation. The methods are compared in homogenous and
heterogeneous column models and on particle models. Performances of the different batch phases in multi
component applications are briefly discussed.
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Chromatography is one of the most important
separation methods in pharmaceutical and
biotechnical industry. It is used both in analytical and
preparative applications and it can be based on
different chemical and physical mechanisms that
creates the separation processes. Ion exchange
chromatography uses the charge of the molecules as
the separating mechanism, affinity chromatography
utilises the affinity of molecules to adsorb on active
sites in a stationary carrier and gel filtration separates
the molecules due to their diffusive properties in a
stationary gel phase. Different chromatography
methods are often performed in series creating an
important part of the downstream processes in these
industries. The different stages should be designed to
achieve optimal separation and concentration of the
desired components, in our case a protein, from a
complex mixture with many different substances.
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A preparative chromatography process is often
performed in packed bed columns. The packing
material is a porous gel, i.e. small beads created by a
matrix of a polymer structure. There are other kinds
of column configurations, like expanded beds and
moving beds, but this work is focused on traditional
packed bed columns. A separation is achieved when
one or many of the substances in the fluid, the mobile
phase, is adsorbed on the packing material, the
stationary phase. The separation is complete when the
packing material is saturated. Then the column is
washed for impurities. Finally the adsorbed substance
is eluted. A medium is pumped through the column
with properties that makes the proteins to desorb, i.e.

change of pH or ion strength. Before the separation
can be restarted the column must be regenerated. This
creates a batch-wise process with many important
design issues to be considered, like operating
conditions for each phase, recovery of product, cycle
time, column efficiency, etc. All these parameters
have to be considered in order to get optimal
conditions. A general reference to preparative
chromatography is Sofer and Hagel (1997). A
rigorous treatment of the theory behind nonlinear
chromatography is found in Guiochon et al. (1994).

&+520$72*5$3+<�02'(/6
Chromatographic processes can be described with
different types of models which all are dependent in
time and space, i.e. nonstationary distributed
parameter systems. These are expressed as a set of
partial differential equations, PDEs. The different
models can be classified as homogeneous or
heterogeneous models. Homogenous models describe
the adsorption in the column dimension.
Heterogeneous models describe it in a microscopic
bead dimension, which is coupled with the
macroscopic column dimension.

+RPRJHQHRXV�&KURPDWRJUDSK\�0RGHOV
All quantities are expressed in the same space
dimensions in homogeneous models. One first
example is a simple chromatography model based on
convection and adsorption. The concentration in the
void liquid is modelled as plug flow convection and
with an adsorption term as
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and�F is the void liquid concentration, W is time and ]
is the axial column dimension, Y is the superficial
liquid velocity, εF is the column void fraction and T is
the concentration of the adsorbed substance. The
adsorption can be modelled by a kinetic expression or
by an equilibrium isotherm. The adsorption
equilibrium is often expressed as a Langmuir
isotherm like
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where�TPD[�is the maximum adsorption capacity and .
is the association coefficient. A column model with
adsorption equilibrium and convection, often called
the Ideal model, becomes a nonlinear first-order PDE
in time and in one space dimension. For a detailed
discussion of the behaviour of models like this see
chap. 6 in Varma and Morbidelli (1997). The second
example of a simple model utilises Langmuir kinetics
instead of the isotherm. Langmuir kinetics is
expressed as
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where NDGV is the adsorption coefficient and NGHV the
desorption coefficient. A column model with
convection and Langmuir kinetics consists of two
coupled equations and it has a famous analytical
solution by Thomas, see for instance Chase (1984).
An extension of the two homogeneous models
presented above is to add dispersion in the void liquid
as
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where�'D[ is the axial dispersion coefficient. Common
boundary conditions, BCs, for this problem are a
Robin BC, also called Flux Model, at the inlet and a
homogenous von Neumann BC at the outlet.
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Models with equilibrium and dispersion, the
Equilibrium-Dispersion models, are frequently
reported in the literature, see Guiochon et al. (1994).
In adsorption of larger molecules, like proteins, mass
transfer becomes important. The models above can be
modified with simple lumped mass transfer
descriptions. These models add some kind of lumped
film resistance to the description above. There are
both static and dynamic versions.

3DUWLFOH�0RGHOV
As mentioned above mass transfer becomes more
important for large molecules and for porous
stationary phases. A model of a particle, a porous gel
bead, is described with diffusion and adsorption as
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where S� is the pore liquid concentration,� U is the
radius, 'H is the effective diffusion and εS is the bead
porosity for the molecule. The last term can be
described by a kinetic expression or by an equilibrium
expression, similar to the ones discussed above. The
model describes the change of the concentration
profile in the bead. The boundary condition is a Robin
condition at the bead surface (U� �5).
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Here F is the liquid concentration outside the bead. At
the origin of the bead the derivative is assumed to be
zero (or finite).
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Heterogeneous models describe the liquid
concentration in void using a column model with
dispersion, convection and fluid side mass transfer
terms. The diffusion in the particle pores is described
together with local adsorption in a particle model.
This means that for every position in the macroscopic
axial dimension in the column equation there is a
corresponding microscopic radial dimension. The
pore concentration at the boundary, S5, is used in the
mass transfer term in the coupled column liquid
equation
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and here�N is the mass transfer coefficient on the fluid
side of the bead. S5 is the pore liquid concentration at
the bead surface, i.e. at U 5. This example of a
heterogeneous model becomes a set of two PDEs in
two space dimension and with one local ODE in cases
with adsorption kinetics. The model is called
heterogeneous as the two space dimensions are
described separately. They only interact at a particle
and column liquid boundary. This model with
kinetics is presented in Carlsson et al. (1994) and
with equilibrium in Bautista et al. (1998). A multiple
component version of the above model, called
VERSE-LC, is reported in Whitley et. al. (1993) and
Berninger et al (1991).
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Chromatographic models are expressed as a set of
partial differential equations, PDEs. The
heterogeneous model with kinetics becomes a set of
PDEs. The first is a parabolic-hyperbolic PDE with
very strong wave character. The second is a diffusion-
adsorption PDE with nonlinear properties. The third
equation is the local adsorption equation. These can
be solved numerically by the method of lines, MOL,
which is the dominating method. Fixed-grid based
MOL is reported in Whitley et al (1993), which uses
orthogonal collocation on finite elements as
discretization into an ODE-system and an implicit
DAE-solver, DASSL, see Brenan et al. (1996), for the
solution of the ODE-system. Other techniques are
reported. These are often based on moving-grid based
MOL. The hyperbolic character can be exploited in
order to calculate the movement of the grid. Two
examples of chromatographic simulations based on
this technique are reported in Carlsson et al. (1993)
and in Asplund  et al. (1997). The use of MATLAB
for simulation of different chromatographic models is
discussed in Nilsson et al. (1999).

&36�722/%2;
The simulation toolbox presented in this paper, called
CPS, is based on fixed grid space discretization of the
PDEs into a large set of ODEs in time. These are
solved by available methods for solutions of ordinary
differential equations, ODE-solvers. In
chromatography the column axial space dimension is
discretized into a large set of grid points due to the
strong hyperbolic behaviour. The ODE system is
often sparse and stiff, which requires an implicit
ODE-solver. The toolbox uses ode15s in MATLAB,
which is a Gear like solver, and sparse matrix
technique for Jacobian calculations, see Champine
and Reichelt (1997) for details. Space discretization
of the gel beads is often not so critical for the overall
simulation performance. The CPS toolbox is a set of
MATLAB M-files that facilitate the development of a
simulation system of chromatography models and
case studies. In CPS toolbox the space derivatives can
be discretized with three different method classes,
finite difference methods, FDM, finite element
methods, FEM, and orthogonal collocation method,
OCM.

([DPSOH����'LVFUHWL]DWLRQ�RI�D�+RPRJHQHRXV�0RGHO
One example of MOL applied on a homogeneous
model, with dispersion-convection and Langmuir
adsorption kinetic, is the following.
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The general form of the discretized model becomes
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where�D is the value (or slope) of the concentration at
the grid points in the domain and E is the value of
adsorbed substance in the same domain. The
discretization matrices, 0, $ and B, can be calculated
with different methods. The D%& is the concentration
vector for the fictitious points in FDM or the
concentration gradients on the boundaries in FEM.
The resulting ODE system can be solved using ODE-
solvers in MATLAB. Note that the adsorption
equation has no space description and is a local ODE
and it does not need any space discretization.
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Before evaluation of the simulation in MATLAB the
M-file construction must be optimised. Below follows
a number of guidelines that increase the simulation
speed independent of the discretization methods.
1. Select an multi-step implicit ODE-solver, i.e.

ode15s.
2. Create the discretization matrices as sparse.
3. Create the discretization matrices before

simulation and declare them as global or in the
input argument list.

4. Define the Jacobian. This can be done as an
analytical defined Jacobian or as “MSDWWHUQ”, a
pattern for the nonzero elements in the Jacobian.

Compilation into C-code using MATLAB Compiler
1.2 did not increase the speed, when the compiler
could not handle sparse matrices.
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In FDM the space dimension is discretized into a set
of grid points. Space derivatives of a quantity are
approximated with a relation between the values of
the quantity at the grid points. The relation is found
by extensive use of Taylor expansions. The accuracy
of the approximation defines the number of grid
points and the relation coefficients that are used in
the approximation. A second order accurate central-
difference approximation of the first and second
derivatives looks as follows
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In the CPS toolbox there are first, second and fourth
order FD-approximations. In column models with



convection FDM needs upwind correction and there is
a set of backward difference approximations of first,
second and fourth order. A good introduction to FDM
is found in Davis (1984) and high order
approximations are presented in Schiesser (1991).
The boundary conditions can be discretized using
fictitious points, see Davis (1984), or by
approximations using the domain grid points, see
Schiesser (1991).
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Consider a homogeneous model with dispersion,
convection and Langmuir kinetics and only four grid
points to reduce the complexity, N=4 (2 internal grid
points). Central-difference approximation of the
dispersion term and backward first order difference
approximation of the convection term (upstream
correction) give the following matrices
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To solve the problem one also needs the D%&. These
are found using the boundary conditions, BCs, for the
PDE system. In FDM using the discretization above
they are the same as the fictitious points. Common
BCs for these problems are a Robin BC, also called
Flux Model, at the inlet and a homogenous von
Neumann BC at the outlet.
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A second order accurate central-difference of the BCs
becomes as follows
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The values at the fictitious points are now found and
a numerical solution based on the matrices above is

possible. Note that the matrices above are problem
independent but the BC discretization is problem
dependent.

(YDOXDWLRQ�RI�)'�PHWKRGV
The evaluation of the finite difference methods was
based on selection of boundary condition
discretization, discretization order and upwind
strategy.
1. The method based on fictitious points gives better

performance then discretization into the domain.
Fictitious points create grid points on the
boundary and increase the dimension of the
problem but the error becomes smaller.

2. Selection of the order accuracy of the
discretization method for the homogenous model
is strongly correlated to the upwind strategy.
Second order method with upwind performed
better then a fourth order method with a poor
upwind correction.

3. Best performance gives a five point
approximation (fourth order accurate) with one
point downwind and three points upwind.
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The method of weighted residuals, MWR, is a general
framework for describing different discretization
procedures. Assume the following integral

5 W ] : ]
L
( , ) ( )∫ = 0

where 5 is the residual form of the equation and : is
the weighting function. Different MWR methods use
different residual form and specific weighting
functions. In most MWR methods the solution is
assumed to be a series of polynomials. This assumed
solution is put into the equation creating a residual
form. The assumed solution must be differentiable
one or two times. In the finite element method the
polynomials are assumed to be piecewise define in the
domain, (FEM) while in total orthogonal collocation
the polynomials are defined in the whole domain
(OCM). In the Galerkin method the weighting
function is the same as the piecewise polynomial. In
collocation methods the weighting function are Dirac
delta functions at the collocation points and the MWR
integral becomes a series of residual expressions at
the collocation points. See Rice and Do (1995) for
more details.
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In FEM the solution is approximated with a set of
finite elements. The elements are piecewise
polynomials, the so-called base functions.
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The integral results in one equation for each base
function, i.e. each element, see Davis (1984). These
equations can be expressed in matrix form and the 0,
$ and % matrices are found, see Borgquist (1999) for
details.
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Consider a homogeneous model from Example 1 once
again and assume four grid points to reduce the
complexity, N=4 (3 elements). Discretization
matrices or linear base functions becomes as follows
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Note that the mass matrix, M, is not a unit matrix and
that ode15s is used with this mass matrix in order
to preserve sparseness. Once again to solve the
problem we need the D%&. These are found using the
boundary conditions, BCs, for the PDE system. In
FEM using the discretization above they are the same
as the derivatives on the boundaries.
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In the case of column models dominated by
convection the FEM must be modified with some
kind of upstream correction. One such method is
streamline-diffusion stabilisation, SDS, see Szepessy
(1989). In SDS the weighting function is slightly
modified so the part of the integral that is upstream is
more weighted then the part that is downstream as
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where β is equal to the convection coefficient in the
homogenous model while δ� �K���'D[. Here is K equal
to the grid size, see COMSOL (1998). In
chromatography applications the SDS gives to much
diffusion and the SDS is therefore modified by a

factor, N, which is between 0.3 and 0.5 for best
performance in our applications
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Parabolic PDEs are successfully solved by the global
orthogonal collocation method, see Villadsen and
Michelsen (1978), and this method is popular in
chemical engineering. The solution of the problem is
approximated by a set of orthogonal polynomials.
These polynomials are defined in the whole domain,
i.e. Lagrange interpolation polynomials. The
polynomials are weighted by a coefficient, which is
found by the method of weighted residuals, MWR.
The weighting functions are Dirac functions at the
collocation points and the MWR-integral becomes a
set of equations. The collocation points are found as
roots to the Jacobi polynomial. These can be
expressed in matrix form and the 0 and $ matrices
are found. For a good introduction see Rice and Do
(1995). Note that OCM uses polynomials that are
defined in the whole domain resulting in nonsparse
discretization matrices, $, but on the other hand is
the mass matrix, 0, unity. This means that OCM is
not a good method for the column equation. On the
other hand OCM is a good method for the particle
equation in many cases.

(9$/8$7,21�2)�0(7+2'6�21
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The methodology and discretization methods
discussed above are evaluated on the three major
classes of chromatography models.

+RPRJHQHRXV�0RGHOV
The column equation is strongly hyperbolic which
results in a large number of grid points in the axial
dimension. FEM using Galerkin and linear piecewise
polynomials together with modified SDS is slightly
better then fourth order FDM with upwind
modifications, as discussed above. The SDS-FEM is
preferred because the stabilisation automatically
decreases with grid size and problem
parameterisation. Note that the SDS is modified for
our applications.

3DUWLFOH�0RGHOV
Simulation of the particle equation with adsorption
kinetics shows that there are small differences
between fourth order FDM, Galerkin-FEM with
linear piecewise polynomials and OCM. The reason is
that sparseness is not important. OCM is slightly
better then the two others for the problems simulated
in this study.

+HWHURJHQHRXV�0RGHOV
The column equation is strongly hyperbolic as
mentioned above, which results in a large number of
grid points in the axial dimension. For each grid



point in the axial dimension there is a particle model
with one pore diffusion equation and one adsorption
equation (in the case of adsorption kinetics). This
makes it possible to make hybrid discretization of the
problem, using different discretization methods in the
axial column and in the particle domain. The best
method in our applications is fourth order accurate
FDM in the axial dimension and OCM in the particle
domain.

3UREOHP�6L]H
Assume that the axial column dimension has 1D[�grid
points and the radial particle dimension is discretized
with 1S grid points. All these equations are defined
for each chemical component. Assume that the
number of components is 1FRPS��This means that the
size of a multi component heterogeneous simulation
problem becomes

1WRW� �1FRPS�1D[�������1S�

Note that the coefficient 2 is the adsorption kinetics.
Experience has shown that the number of grid points
in the particle must be between 5%-10% of the
column grid points in order to give error in the same
order of magnitude as the column discretization. This
rule of thumb change with the isotherm parameters.
Note that this recommendation is valid for
heterogeneous models with adsorption kinetics. For
heterogeneous models with only diffusion the
recommendation is only 2%-3%. This guideline
means that we can use the number of column grid
points as a price/performance parameter.

([DPSOH����,QWUDSDUWLFOH�EHKDYLRXU
The dynamic response of a heterogeneous model with
Langmuir kinetics is shown in Figure 1. The problem
is solved with a hybrid discretization method using 50
internal grid points in the column and 5 internal
points in the particles for two components, in total ca.

)LJXUH����'\QDPLF�UHVSRQVHV�RI����JULG�SRLQWV�LQ�WKH�FROXPQ�OLTXLG
ZLWK�FRUUHVSRQGLQJ�SDUWLFOH�JULG�SRLQWV�

1320 states. In the upper plot in Figure 1 the
responses of 10 (of 51) column grid points are shown.
The lower  plot  shows the responses of the
corresponding 10 pore liquid concentrations in the
particle. The column equation is discretized with a
fourth order FDM with upwind correction. The
particles are discretized by Galerkin-FEM.

%$7&+�&<&/(�6,08/$7,21
The CPS toolbox can be used to simulated batch
cycles including four main batch phases, namely
adsorption, wash, elution and regeneration.

$GVRUSWLRQ
In this batch phase the process medium is pumped
into the column. It is desired to create as steep
concentration profile as possible. This means that the
whole column capacity is used for adsorption. This
phase is aborted when the output concentration is
over a certain value, e.g. 5% of the inlet
concentration. If the separated protein is expensive
this may be lower or if it is not it can be higher.
Interesting performance indices� are the amount of
losses, :DGV, and used column capacity, 4DGV.
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Z is the volumetric flow rate, F is the concentrations,
WE is the break time, T is the adsorbed concentration,
THT is the equilibrium concentration for the inlet
concentration and 9JHO is the gel volume.

([DPSOH����$GVRUSWLRQ�3HUIRUPDQFH
The simulation of the adsorption batch phase, seen in
Figure 1, has the following performance indices for
two different flow rates listed in Table 1, below.

7DEOH����(YDOXDWLRQ�LQGLFHV�IRU�WZR�GLIIHUHQW�IORZV�DW�WZR�GLIIHUHQW
EUHDN�FRQFHQWUDWLRQV�

IORZ�UDWH EUHDN����V� :DGV 4DGV

1.67e-8 0.05  (52596) 0.0015 0.93
1.67e-8 0.10  (53427) 0.0027 0.94
2.50e-8 0.05  (34248) 0.0021 0.91
2.50e-8 0.10  (35033) 0.0038 0.93

We see in Table 1 that protein losses increase with
increase flow and in this case the flow rate is
increased by 50%. On the other hand the break time
is decreased, which makes it possible to increase the
productivity.

:DVK
Impurities that do not adsorb are washed out from the
column by pumping clean buffer. In this phase we
would like to wash out as much impurities as possible
but on the other hand minimise loss of goal protein
and buffer medium. This phase is aborted when the

0 1 2 3 4 5 6

x 10
4

-2

0

2

4

6

8
x 10

-3

time

vo
id

 c
on

c.

0 1 2 3 4 5 6

x 10
4

-2

0

2

4

6

8
x 10

-3

time

po
re

 c
on

c.



impurities are below a certain value or just when a
given volume of buffer is consumed.

([DPSOH����:DVK�6LPXODWLRQ
A simulation of the wash phase is seen in Figure 2.
The initial values are the values when the adsorption
is aborted at 5% and the wash phase uses the same
flow rate. Washing volume is only 1.3 times the
column volume and the loss index is 0.045.

)LJXUH����2XWSXW�FRQFHQWUDWLRQV�IRU�LPSXULWLHV��XSSHU�FXUYH��DQG
SURWHLQV��ORZHU�FXUYH��GXULQJ�ZDVK�

(OXWLRQ
When the column is washed the adsorbed components
are eluted out from the column. This can be done in a
number of different ways. They can be displaced by a
displacement component, a chemical component that
adsorbs harder to the stationary phase. This means
that it push other components out in the liquid and
out from the column. They can also be eluted by a
different elution media, which changes the chemical
properties in the column, causing the components to
desorb. The adsorbed components leave the column in
elution peaks. There is a trade-off between
concentration of the final sample and loss of protein.

([DPSOH����(OXWLRQ
The elution profiles are seen in Figure 3. The initial
values are the values when the wash phase is aborted.
The recovery in elution phase is approximately 86%
of the injected protein and with a concentration
increase of 12 times. The impurities are almost totally
removed.

5HJHQHUDWLRQ
Regeneration is similar to washing. Buffer is pumped
through the column to reset the chemical properties
after elution. On the same time it is important to
minimise the loss of buffer.

08/7,�&20321(17�$33/,&$7,21
A simple three component application is breifly
presented. The components are three proteins that

)LJXUH����(OXWLRQ�SURILOHV�RI����JULG�SRLQWV� �RI� ���� LQ� WKH� FROXPQ
OLTXLG��XSSHU�SORW��DQG�LQ�WKH�FRUUHVSRQGLQJ�SRUH�OLTXLG�JULG�SRLQWV�

have almost the same physical characters. They are
assumed to be of almost the same size. Their
chemical properties are different and they have
different adsorption isoterms. The component A is
our goal protein. Component B is assumed to adsorbe
100 times weaker to the stationary phase, while
component C is adsorbed 2 times harder. This means
that the component will pass the column in the order
B, A and C. The adsorption is aborted when
component A reaches 5% at the outlet. This means
that component B has been measured at the outlet for
a long time and component C can not be measured, as
seen in Figure 4.

)LJXUH����7KUHH�FRPSRQHQW�DGVRUSWLRQ�UHVSRQFHV�RI����JULG�SRLQWV
LQ�WKH�FROXPQ�OLTXLG�

The washing phase is done by using a washing
volume of 4 column volumes. It is clearly seen that
the weak adsorbed component B is almost washed out
from the column is this step. The responses of 20 grid
points is seen in Figure 5.
In this application Langmuir kinetics is used to model
the adsorption. This means that the adsorption model
can not handle elution directly and the Langmuir
coefficients must be adjusted for the elution phase. In
this  xample  it is  assumed  that  both  component  A
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)LJXUH����:DVK�RI�WKH�WKUHH�FRPSRQHQWV��1RWH�WKDW�FRPSRQHQW�%�LV

DOPRVW�WRWDOO\�ZDVK�RXW�

and B will elute for the selected elution medium.
Component C do not elute for the selected medium.
The result is that component A will elute together
with small amount of component C. Component B
has almost totally been wash out in the previous step.
This is clearly seen in Figure 6. The resulting
chromatogram is shown in Figure 7.

&21&/86,216
This paper has presented a toolbox in MATLAB for
simulation of multi component chromatographic
processes. The CPS toolbox facilitates the
development of simulations based on the state-of-the
art in numerical solution technique. Experiences from
simulations are summarised in a set of guidelines for
chromatography problems. Simulations of
chromatography models, particular models that are
heterogeneous, require large computer resources
(today). In order to decrease the burden the MATLAB
code can be optimised in a number ways. This is often
more important then selection of discretization
method. It is shown that the toolbox is well suited for
simulation and evaluation of whole batch cycle
studies.

)LJXUH����(OXVWLRQ�SKDVH�ZKHUH�FRPSRQHQW�$�LV�HOXWHG�

)LJXUH����7KH�UHVXOWLQJ�FKURPDWRJUDP�IRU�WKH�WKUHH�FRPSRQHQW
DSSOLFDWLRQ�
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