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Abstract 

Hospital costs play a significant role in national 

budgets. To some degree, patients are suffering from 

lack of vacant beds and caretakers. Emergency 

Department (ED) crowding causes a series of negative 

effects, e.g. medical errors, poor patient treatment and 

general patient dissatisfaction. One road to improve 

the typical clinical system is to describe the patient 

flow in a model of the system and how the system is 

constrained by available equipment, beds and 

personnel.  

 

This paper focuses on modeling and simulation of the 

capacity of utilities and how using advanced control 

techniques can enable intelligent scheduling, leading 

to smooth patient flow to reduce emergency 

department crowding. By comparing different models, 

the most efficient ones will be identified for 

implementation. The idea is that hospitals can use the 

proposed models to predict the future resident patient 

number in each department/ward. The caretakers can 

use the predicted results with other information to 

make decisions of admission of the intake patients, 

find the optimal pathway for the patients to minimize 

the residence time, and make intelligent scheduling to 

reduce the queueing length in the hospital. 

1. Introduction 

Hospital cost plays a significant role in national 

budgets. To some degree, patients are suffering from 

lack of vacant beds and caretakers. Bottlenecks and 

congestion are everyday business. The probability of 

unacceptable refused admission is around 14% [1]. 

 

Emergency Department (ED) crowding causes a series 

of negative effects e.g. medical errors, poor patient 

outcomes and patient dissatisfaction. Patient 

satisfaction, staff satisfaction, and hospital revenue are 

all negatively impacted when patients, information, 

and materials do not move through hospitals in a 

timely and efficient way [2].  

 

The hospital crowding is primarily regarded as the 

consequence of inadequate medical resources. 

However, recent research has shown that the highly 

stochastic process of incoming patients causes the 

violation of resources, which would lead to such 

crowding. Hence, to simply expand medical care 

capacity may do little to relieve the emergency 

department crisis. The situation can be potentially 

improved by optimizing the utilization of medical 

resources, e.g. bed, equipment and personnel  

 

To be able to improve the typical clinical system, it is 

necessary to develop the patient flow model through 

the system and describe how the system is constrained 

by available equipment, beds and personnel. Queuing 

Theory with Markov Chain (QTMC), and Discrete 

Event Simulation (DES), are the methods that are used 

to describe the system.  

 

The first model (QTMC) is only able to consider 

limited scenarios that can occur. One published 

QTMC model of the orthopedic department of the 

Middelheim hospital focuses on the impact of outages 

of the personnel (preemptive and non-preemptive 

outages), on the effective utilization of resources, and 

on the flow time of patients [3]. Several queuing 

network solution procedures are developed such as the 

decomposition and Brownian motion approaches. 

 

On the other hand, DES has been well recognized in 

healthcare. These models are broadly used for the 

validation of other models. The DES models offer a 

valuable tool to study the trade-off between the 

capacity structure, sources of variability and patient 

flow times [4]. 

 

This paper is organized as follows: 
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In section 2, the definition of patient flow in the 

hospital is introduced. Diagnosis and treatment of 

patients and uncertainty in the system is discussed. In 

section 3, several modeling techniques will be 

described. Two modeling process, the Queueing 

Theory and Markov Chain (QTMC) model, and 

Discrete Event Simulation (DES), are applied to 

describe the patient flow. In section 4, possibilities of 

using Model Predictive Control (MPC) optimize the 

patient flow is discussed. In Section 5, conclusions are 

drawn.  

2. Patient flow 

The patient flow can be considered as the movement 

of patients through a set of locations in a healthcare 

facility. There are six characteristics of patient flow. 

These characteristics are the basic elements and 

assumptions in the patient flow model [5]. 

• Long waiting lists with respect to complex 

operations 

• Uncertainty and apparent chaos are  common 

• Every patient is unique  

• Relative large variation in Length of Stay (LoS)  

• The incidence of complications 

• Emergency admissions 

 

The patient flow can be considered as a combination 

of physical flow, information flow and decision flow:  

• Physical flow: In this view, the flow of all the 

existing materials e.g. patients, test/treatment 

materials, or caretakers is considered. Some examples 

are patient pathway, transport of the blood, or the flow 

of caretakers. 

• Information flow: Include information about the 

patients and the states in different departments, such 

as the test results, the occupancy of beds, waiting lists 

of operation departments, numbers of doctors and 

nurses who are available, etc. 

• Decision flow: The decision of a different 

pathway of physical flow or information flow is the 

decision flow. The decision flow depends on the 

diagnosis of the patient and the state in the hospital. 

Sometimes, decision flow can be a part of information 

flow.  

 

The components of intake emergency patients are 

patients from their home, other institutions, private 

care, other wards, site of the incident or born in 

hospital. The different sources have different inter-

arrival rate; the combination of different intake 

patients presents a certain distribution. This 

distribution is able to be predicted by analyzing the 

history data. 

 

All the intake patients at hospitals can be classified 

into two modes based on the sick level: emergency 

patients and planned patients. The queueing policy 

will be different based on the illness level, such as 

without other factors, a patient with an open wound 

has a higher priority over a patient with a stomach 

pain. As a consequence, patients with lower priority 

have to wait longer. Arrival patients follow a process 

as depicted in Fig. 1. 

 

 
Fig. 1 Patient flow of the emergency department 

 

The arriving patient received by the registration clerk 

who records patient arrival time and the symptoms. 

The nurse checks the records and determines the 

acuity of the illness. If patients arrive in an ambulance, 

they begin their process at the ER bed area, with the 

registration paralleling with emergency care service.  

 

In general, after the acuity of the illness has been 

determined, the patient either goes to the bed area or 

queues for a bed with a priority queue discipline. Once 

the patient gets an available bed, the medical treatment 

begins. First, the necessary tests are ordered. After the 

results are obtained from the laboratory, the caretakers 

will decide whether the patient needs to be admitted or 

not. The admitted patients will continue treatment and 

are distributed to another care unit. The records and all 

the test results will follow the patients to the other 

units. Other patients will receive necessary therapeutic 

care and are sent home. The records will cease to 

exist. 
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Being admitted to the hospital, being discharged from 

the ED, leaving the emergency department before 

treatment, and deceased are the four ways a patient 

may exit the ED. 

 

The following factors influence the results of 

diagnosis and selection of treatment [6, 7, 8]. 

• Priority of patients 

• Quantity of physicians and nurses 

• beds in the wards  

• Treatment equipment  

• Location of different departments in the hospital.  

 

Some real data from Ringerike sykhus (Norway) are 

provided by IMATIS AS [19]. These data include 513 

samples. Each sample records the patent ID, the 

arrival time, departure time, the ward to enter, next 

ward to enter after treatment. In Ringerike sykehus, 

different departments share the same wards, and the 

wards are classified by the location and facilities. The 

wards include AK, MO, K2,3,4, J2,3,4, L2,3,4, IN, I3, 

4, and so on [9]. Each ward has a capacity of 9 beds. 

One typical pathway is shown in Fig. 2. Fig. 2 also 

indicates the frequancy of patients going from the AK 

ward to one of the other ward. Fig.3 shows the number 

of patients in AK ward at a given time. 

 

 
Fig. 2 Selected patient flow at Ringerike hospital 
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Fig. 3  Resident patient number in AK at Ringerike 

hospital 

 

The residence time, is the time when the patients 

arrival at the hospital until they come out of the 

hospital. The residence time in the hospital includes 

the residence time at each department and the transfer 

time. For a department, the residence time includes the 

waiting time, and the processing time (service time). 

The residence time in a process following is 

considered as an Exponential distribution. In actual 

processes, the distribution can be studied from the 

history data.  

 

The mean value of arrival rate is influenced by many 

factors. There is a big difference between weekdays 

and weekends, working time and resting time, and so 

on. Big events may also increase the number of 

patients, e.g. anniversary, sports event, traffic 

accidents etc. In a day more patients arrive at the 

hospital during the day and evening than the morning.  

 

The planned patients make an appointment with the 

hospital. The patients will come to the hospital based 

on a schedule, which also means this variable can be 

controlled.  

 

To analyse stochastic variables, the corresponding 

distributions of interarrival rate and residence time 

should be found. Herein, Exponontial distribution, 

Weibull distribution, and Poission distribution are 

inverstageted. The Weibull distribution has a flexible 

shape. This distribution has been used successfully in 

many applications as a purely empirical model [17]. 

The Exponential distribution has only one unknown 

parameter, This distribution has a memoryless 

property, which means previous states don’t influence 

the future states [18]. If the variable in the Exponential 

distribution is integer, the variable can be expressed 

by Poisson distribution. Poisson distribution has the 

same properties with Exponential distribution. 

 

For Matlab, functions e.g. ‘wblfit’, ‘expfit’, 

‘poissfit’, etc. in the Statistical Toolbox can be 

used to estimate the parameters of different 

distributions. One example to obtain the parameters of 

Exponential distribution is as follows: 

Given the data X, lambda = poissfit(X) 

returns the maximum likelihood estimate of the 

parameter corresponding to 95% (default) confidence 

intervals of the Poisson distribution,λ [18]. 

 

The AK ward mainly processes primary care of the 

emergency patients. Comparing different distributions 

with the real data, the Weibull distribution fits the real 

data the best (mean and variance values in Fig. 4, Tab. 

1). The Weibull distribution is suitable to demonstrate 

the properties of the residence time in the AK ward. 

The resident patient number from the data is always 

less than the capacity of 9 beds (Fig. 3). Thus, it is 

seldom that patients have to queue for beds in the 

samples. In this situation, the residence time can be 
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treated as the service time. The parameters in Tab. 1 

are estimated using the Matlab Statistical Toolbox. 

 

Tab. 1 Residence time distribution in AK at Ringerike 

hospital 

Distribution: Mean: Variance: Parameters: 

Weibull 2.54 2.49 a    2.85  

b    1.65 

Exponential 0.82 0.68 µ     0.83 
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Fig. 4 Residence time distribution in AK at Ringerike 

hospital 

 

The wards (MO, K3, IN) mainly process treatment 

after primary care, they have different functions and 

are mainly classified by their location in the hospital. 

The residence time in these wards are much longer 

than that of the AK wards (Tab. 2). By analyzing the 

real data, all the distributions of the residence time of 

these wards can be treated as an Exponential 

distribution. In the wards MO, FO, K3, and IN, the 

resident patient number of selected data is less than 

the capacity of each ward. The residence time can be 

taken as the service time.  

 

Tab. 2 Selected residence time distributions in each 

ward 

Wards Distribution Parameters 

AK Weibull a    2.85  

b    1.65 

MO Exponential µ 15.56 

K3 Exponential µ 52.02 

IN Exponential µ 34.37 

 

The incoming patient number is a discrete stochastic 

variable (see dotted line in Fig. 3). The Poisson 

distribution fits the discrete stochastic variables well. 

The parameters of all these 5 wards are shown in Tab. 

3. The AK ward has the highest arrival frequency of 

about 0.8 patients per hour. The high arrival rate and 

the short service time (high throughput) lead to a big 

variation in performance during one day. On the other 

hand, the average time of one patient arrival at the 

other departments is more than 4 hours. The patient 

number has less variance during one day. 

 

Tab. 3 Incoming patient number distribution 

Distribution 

(Poisson) 

AK MO FO K3 IN 

Parameterλ 0.82 0.17 0.23 0.087 0.095 

3. Simulation of the patient flow 

3.1 Discrete Event Simulation 

In DES, the operation of a system is represented as a 

chronological sequence of events. Each event occurs 

at an instance in time and marks a change of state in 

the system [10]. The modeled system is dynamic and 

stochastic. DES includes Clock, Events List, Random 

Number Generators, Statistics and Ending Condition 

[11].  

 

For example, in the process that patients wait for a bed 

in the ward, the system states are queueing length or 

number of vacant beds. The system events are 

patients-arrival and patients-departure. The system 

states, like vacant beds are changed by these events. 

The random variables that need to be characterized to 

model this system stochastically are patient arrival 

time and residence time. To simulate such system, 

first generate a series of random entities based on the 

distribution. Let ( )tn,  be n  patients coming into the 

station at time t . Then all the incoming patients during 

( )ktdtttdtttt ,...,,, 23121 +=+=  can be expressed 

as ( ) ( ) ( ){ }kk tntntn ,,...,,,, 2211
. Here

1n ,
2n ,…, 

kn are random numbers. dt is constant. The simulator 

generates service rate for each patient, 

1l ,
2l ,…,

kl which are random numbers. All the 

random numbers obey a certain distribution. The 

patients leave the ward when the residence time is 

over. The simulator stores all the data. The patient 

number and other results can be obtained by analyzing 

the saved data. Such as to compute the resident patient 

number at time
it , the simulator find out the patients 

that time 
it  is between this patients’ arrival and 

departure time. The number of these patients is the 

resident patient number (Fig. 5).  
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Fig. 5 DES of patient flow at Ringerike hospital 
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The simulation logic of DES is shown in Fig. 6. Here 

in order to get the mean value of the results at each 

time point, DES is repeated (first loop). 

 

 
Fig. 6 DES programming logic 

 

There are several advantages to build such models 

[12]. 

• Detailed system behavior can be modeled;  

• It is possible to model the performance, 

dependability; 

• Less matrices computing. 

 

Also there are some drawbacks compared with other 

models [12]. 

• Long execution time; 

• Simulation results are difficult to interpret; 

• It is quite likely that some rare events or states are 

never encountered by the simulation runs. 

3.2 Queuing Theory and Markov Process  

If a queueing system has m beds, a Poisson distributed 

incoming rate and an Exponential distributed service 

rate, this queueing system can be denoted by M/M/m 

[17].  

 

 
Fig. 7 QTMC model of one ward  

In Fig. 7 : 

µ  the service rate in a station, the average time a 

doctor spent on a patient. 

λ  the inter arrival rate, is the input. 

 

Define )(tkπ   as the transient state probability vector 

is the state. An M/M/m queueing system can be 

described by the model (Fig. 7) [10].  
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Boundary model 0=k : 
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This system of ODEs (Ordinary Differential Equation) 

can be written in Matrix form as: 

),...)0(),0(()0(),(
)(

10 ππππ
π

== tQ
dt

td                         (1) 

where: 
T

m tttt ))(,),(),(()( 10 ππππ K= , m is the number of states. 

)(0 tπ is the boundary. Since )(tπ is a probability 

vector, the sum of the states equals to 1. 

11 1 =+ πm
T                                                                  (2) 

The rank of Q is m-1. Q is not a singular matrix. In 

order to compute the value of )(tπ , substitute Eq. (2) 

into Eq. (1), then the differential equation becomes:  

'1uBxQ
dt

dx
q +=

 

where λ='u the intake rate can be varied. 

Here x is the state, x =
1:0 −mπ , mx =)dim(   

011)1(
11 = →= = πππ π

QQ
dt

d TTT
T

; 

qQ  can be written as a function of inputs 'u : 

231 AuAQq += ; 

)1)(1(
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'u  can be separated into two categories; which are 

generated by emergency patients and planned intake 

patients. The Emergency patients are uncontrollable 

and can be regarded as disturbance v ; the planned 

intake patients can be scheduled, and can be taken as 

the control variable u in this model.  

vuu +='  

)())(()( 1211 vuBxAvuAvuBxQ
dt

dx
q ++++=++=  

The patient number y can be approximately computed 

by: 

Dxy = , ]1,...,2,1,0[ −= mD  
To obtain the solution for queuing networks (Fig. 5), 

first introduce one property of Poisson streams. 

 

Different streams of patients may come into one 

department. If the streams obey the Poisson 

distribution, then joining these Poisson streams 

produces a single Poisson stream. Patients will 

distribute to different departments after one treatment. 

If the patient number obeys the Poisson distribution, 

probabilistically splitting this stream gives rise to two 

or more Poisson streams [12]. These two properties 

guaranteed the patients number coming out from AK 

ward to IN or MO ward, and the combination of 

patients from AK and MO wards to IN ward also 

obeys Poisson distribution. 

 

The outputs of each station (
3,2,1, ,, ooo λλλ ) is computed 

by solving the 2
nd

 order equation. This is an 

approximate value obtained from the steady state 

solution of a queueing system (M/M/m). The output of 

the queueing system is only dependent on the current 

input. Here if the resident patient number has not 

reached the steady state, the current input is treated as 

it has reached the steady state with another input oλ . 

This value is only used to compute the departure 

patient number [10]. 

[
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Here, The current patient number L , the number of 

servers S , and current intake patient rate µ are 

known. 1C , which equals to the probabilities that the 

patients must queue for a bed (including full beds 

occupied situation), can be computed in real time. 

 

The inputs of each station are the output streams from 

other stations multiply the probabilities of patients 

from other stations flowing into this station. 

 

The model in a three station queueing network (Fig. 5) 

can be written as  
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The simulation logic is shown in Fig. 8 

 

 
Fig. 8 Queueing theory programming logic 

 

Fig. 9 is the simulation results of patient number and 

Fig. 10 is the intake patient number in AK, MO, and 

IN wards. The plots of DES and MCQT are the results 

simulated by the two models (DES, and MC + QT). 

The intake patient number has the circle time of eight 

hours. From Fig. 3, we can see the intake patient 

number have cyclical changes, and the cycle time is 

around 8 hours. The selection of 8 hours circle time 

fits the actual situation and previous studies [2]. The 

MCQT model is less sensitive than the DES model, 

the fluctuation of MCQT model is less than the DES 

model, when the inputs have great changes. 

 

The two plots DES-S and MCQT-S show the patient 

number of two models when the intake patient number 

and service time is constant. The relationship of AK, 

MO, and IN wards is shown in Fig. 5. The plots show 
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that both models can simulate the patient number and 

they have similar results. 

 

The state space of MCQT is 100 and the ensemble 

size of DES is 200 (first loop in Fig. 6). The larger the 

dimension of the state space the better results can be 

obtained. But a large state space requires more 

computation memory and time to simulate. The results 

show that the largest average patient number is less 

than 15. The number of state space with 100 is 

possible to get a very accurate result.  

 

The DES plots have more fluctuation between each 

simulation plots. These unstable properties can be 

improved by increasing ensemble size, but a large 

ensemble size of simulations will lead to a higher 

computation cost. 
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Fig. 9 Patient number (AK, MO, IN) 
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Fig. 10 Intake patient number (AK, MO, IN) 
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4. Optimal control of patient flow 

In order to perform the function of the emergency 

department and the other departments optimally, we 

can control some variables, e.g. the work schedule of 

caretakers, the available beds, and the incoming 

patients. The control variable here is chosen as the 

planned incoming patients. 

 

Many algorithms have been studied to control the 

queuing systems, e.g. dynamic programming [14], and 

Lagrange approach of adaptive control based on 

Markov Chain model [15]. In this chapter, the use of 

Model Predictive Control is discussed. 

 

The model predictive controller uses the model and 

current measurements to calculate future inputs that 

will fulfill the objects and variable constraints. Model 

predictive controllers rely on dynamic models of the 

process. The models are used to predict the future 

unknown variables.  

 

The dynamic system can be modeled as or be 

transformed to a linear state space model. Then the 

effect of changes in unknown variables can be added 

together to predict the response. This approach leads 

the control problem to a series of matrix algebra 

calculations that are fast and robust [16].  

 

In the queueing system here, the predictive model is 

based on queuing theory and the Markov Chain 

model. The inputs are either planned or emergency 

patient inter-arrival rate. The object is to reduce the 

queuing length in a certain time horizon. The 

measurements are the current patient number in the 

system.  

 

A control objective 
kJ  (or cost function) is a measure 

of the process behavior over the prediction horizon L. 

This function can be the difference between future 

outputs and some specified future reference, and 

sometimes recognizing that the control is also costly. 

This objective is minimized with respect to the future 

control inputs and only the first control input is 

actually used for control. This optimization process is 

solved again at the next time instance. The advantage 

of MPC is that constraints of the process variables can 

be treated in a simply way. In order to optimize the 

patient number and minimize the transport of patients, 

both the deviation between outputs and references, 

and the variation of the control variable should be 

considered. The intake patient number should be 

positive. These algorithms implemented real-time is 

shown in Fig. 11. 

 

The states are the probabilities x which cannot be 

measured. The inputs are patient arrival rate which is 

estimated. Current patient number y can be measured. 

In order to use MPC algorithm, the states should be 

estimated. One simply way is to set the current 

state 0)(,1)( =≠= inxix tt
, when there are i-1 patients in 

the wards. A state estimator (e.g. Kalman Filter) can 

also be used to estimate the state. 

 

The patient number has a daily and weekly cycle of 

change. When the throughput of the ward is high, the 

prediction horizon can be 1 day. Otherwise, the 

horizon can be 1 week. A smaller time step requires 

larger memory. The time step T could be selected as 1 

hour. This selection can present nature of the system, 

and also be easy to compute and control. Other 

selections with 6 or 8 hours time step are preferred for 

high throughput systems or long prediction horizon. 

The data from Ringerike sykhus shows that the 

throughputs of the wards are low and the data varies 

per day significantly. The MPC algorithm with 1 hour 

Time step and 24 hours horizon can be selected. 

 

The states number combined with the unknown 

variables and horizon may cause large matrix and 

complex matrix computing. This algorithm is time 

consuming. Compared with the time step, the long 

computing time is tolerable.  
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constant 

parameters

t t+T t+2T

t+1 t+2 t+T-2 t+T+1t+T-1

Horizon
Horizon

（next step）

1. Obtain discrete state 

space model 

Get time variance 

parameters

2. Solve optimization 

problem, minimize the 

objects.

1. Obtain discrete state 

space model 

Get time variance 

parameters

2. Solve optimization 

problem, minimize the 

objects.

U*

3. Using u*(1)to 

control the system

3. Using u*(1)to 

control the system

 
Fig. 11 MPC for periodic variance system 
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5. Conclusions and future works 

Health care resources and patient treatment have 

become increasingly important and expensive. The 

task of balancing the delivery of quality health care 

and the facilities in the hospitals is becoming a hot 

topic. 

 

Patient flow is the transport of the patients through the 

health care system, including three different phases: 

the physical flow, information flow and decision flow. 

In order to find some possible solutions for improving 

the patient flow and predicting the number of the 

patient in different departments, models based on 

different theories, e.g. the Queuing Theory and 

Markov Chain model, the DES are introduced and 

compared.  

 

The simulation based on Queuing Theory and Markov 

Chain can be a good approach for implementation in 

the real hospital. This model provides a quite good 

method to handle the randomness and uncertainty in 

the patient flow, but it is not easy to find a proper 

mathematical model when the process is complex. The 

DES models are commonly used in checking the other 

models. The approach of using this model in patient 

flow also gives a quite realizable result. 

 

The patient flow can be controlled by a host of 

different methods. The MPC methods described here 

are adapted from its use in process control. And 

because of the limitation of the control variable, 

improved algorithms, e.g. more efficiently handling 

the integral variables and the constraints, should be 

further developed.  

 

The future work can be considered in the following 

aspects: 

• Modeling systems with more complex properties. 

The real process is more complex than the case studies 

in this thesis. Problems like processes with different 

service disciplines, and process which includes the 

effect of caretakers can be modeled in the future. 

• Optimal control of the queuing system 

Section 4 demonstrated the possibilities of using MPC 

to control the queueing systems. More research should 

be done to get the theory to practice. 

• Reduce and optimize the matrices computing.  

Simulator generates plant of matrices during 

simulation. These matrices are time consuming and 

will take up lots of resources. Methods to reduce and 

optimize the matrices computing can be investigated 

in the future. 

• Implementation in the real hospital. 
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