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Abstract

DSR E is a sub-space system identification algo-
rithm for solving deterministic / stochastic linear time-
invariant (LTI) system identification problems. DSR E
consists of two steps: (i) The innovation process is iden-
tified. (ii) The deterministic / stochastic system identifi-
cation problem is reduced to a deterministic problem by
considering the identified innovation process as a deter-
ministic input. In the DSR E algorithm presented in [1],
this deterministic problem is solved using a determinis-
tic sub-space system identification method. ARX is a
system identification algorithm based on the ordinary
least squares (OLS) method. In addition to the basic,
single-step ARX algorithm, there are various multi-step
ARX algorithms. In this paper it is shown that the first
step of DSR E is mathematically identical to the single-
step ARX algorithm. The second step, which is a de-
terministic problem, may also be solved by single-step
ARX. Hence, each of the two steps of the DSR E al-
gorithm may be replaced by single-step ARX, allowing
DSR E to be approximated by a two-step ARX algo-
rithm. DSR E and its two-step ARX approximation are
compared by modeling a section of the copper refining
process at Xstrata Nikkelverk, Kristiansand, Norway.

Keywords

ARX; DSR E; Sub-space system identification; System
identification.

1 Introduction

Modeling of dynamic systems is a most important part
of today’s science and engineering. Dynamic models
serve many purposes, for example: (i) Training of pro-
cess operators, pilots and astronauts. (ii) Exploring
systems in a different time scale than physical time.
(iii) Testing systems by simulations before they are
manufactured, for example ships, airplanes, missiles,
and sub-sea oil installations. (iv) Model-based control,
such as LQG control, model-based predictive control
(MPC), linear and nonlinear decouplers, Smith predic-
tors, etc.

One of the most commonly used approaches for mod-
eling dynamic systems is to develop models from equa-
tions of science. This is referred to as mechanistic mod-
eling or first principle modeling. Another approach that
may be based on laws of science and / or knowledge
of the systems to be modeled is linguistic modeling
(fuzzy modeling). Empirical modeling is another com-
monly used approach for developing dynamic as well
as static models: Models are developed directly from
observations of the systems. This is also referred to as
black-box modeling. Empirical modeling used to build
dynamic models is referred to as system identification.
System identification is commonly used for developing
models for model-based control. System identification
may be used for systems that are too complex to be
modeled by mechanistic modeling and where param-
eters in the mechanistic models are unknown.

A general introduction to system identification is given
in [2]. Both linear and nonlinear system identifica-
tion are considered. Also practical issues are discussed,
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such as experiment design and data preprocessing. The
DSR sub-space system identification algorithm is pre-
sented in [3]. In [1, 4] the DSR E sub-space system
identification algorithm for use in closed loops is pre-
sented. DSR and DSR E have been developed by David
Di Ruscio. Simulations comparing DSR E to other sys-
tem identification algorithms, including N4SID, DSR,
and the MATLAB implementation pem (Prediction Er-
ror Method), are presented in [1].

The main contribution of this paper is to show that the
DSR E algorithm can be approximated by a two-step
ARX algorithm. This approximation will in this paper
be referred to as DARX.

The mathematical derivation of the DSR E algorithm,
and inherently also the DARX algorithm, requiresN →
∞ and J → ∞. Here N is the number of samples and
J is a parameter to the DSR E and DARX algorithms.
The J parameter is the order of the model to be identi-
fied in the first step of the DARX algorithm. These re-
quirements can not be met in any practical system iden-
tification problems. A study of how finite values of N
and J influence the first step of DSR E and DARX is
presented in this paper.

2 Notation and Definitions
The inputs to a system are collected in the input column
vector, u ∈ Rr×1, where r is the number of inputs.
The outputs from a system are collected in the output
column vector, y ∈ Rm×1, where m is the number of
outputs. A sub-script to these vectors, for example yk,
refers to the sampling number.

The limit notation of Eq. (1) is simplified as shown in
Eq. (2).

lim
x→z,y→z

f(x, y) (1)

lim
x,y→z

f(x, y) (2)

Def. 1 (Innovation Process). The system output, yk,
may be decomposed into two components: (i) The com-
ponent of yk that can be predicted from previous inputs,
u−∞, . . . , uk−1, and previous outputs, y−∞, . . . , yk−1,
assuming no model errors. For bi-proper systems, i.e.
systems having direct feed-through from the input, uk,
to the output, yk, the current input, uk, is also included
in the prediction of yk. This predictable component of
yk is referred to as ȳk. (ii) The complement of ȳk, i.e.
the component of yk that can not be predicted from pre-
vious inputs and previous outputs. This is referred to as
the innovation process, εk. Hence, εk = yk − ȳk.

The symbol ε is used for the true innovation process,
which in general is unknown. The symbol ε is used for
the identified innovation process. The identified inno-
vation process is in general not exactly identical to the
true innovation process.

Def. 2 (State Space Model Form). The discrete state
space model form used by the DSR E algorithm is as
shown in Eq. (3) and Eq. (4) [5].

x̄k+1 = Ãx̄k + B̃uk + C̃ek (3)

yk = D̃x̄k + Ẽuk + F̃ ek (4)

In Eq. (3) and Eq. (4) the tilde symbol is used to
avoid confusion with the polynomials of ARMAX and
ARX models. x̄ ∈ Rn×1 is the estimate of the sys-
tem state vector, x, where n is the number of system
states. e ∈ Rm×1 is white noise with covariance matrix
E(ekeTk ) = Im. For invertible F̃ , the system can be
written on innovation form as presented in Eq. (5) and
Eq. (6) [5].

x̄k+1 = Ãx̄k + B̃uk + K̃εk (5)

yk = D̃x̄k + Ẽuk + εk (6)

In Eq. (6), εk = F̃ ek is the innovation process and K̃ =
C̃F̃−1 is the Kalman filter gain matrix. In this paper,
only strictly proper systems will be considered, i.e. Ẽ =
0m×r.

Def. 3 (ARMAX Model Form). Eq. (7) defines the gen-
eral form of ARMAX models [2].

A(q)yk = B(q)uk + C(q)εk (7)

In Eq. (7), q is the time-shift operator of the Z-
transform, i.e. q−1 yk = yk−1. Symbol q is commonly
used within the subject of system identification. Sym-
bol z is used in many other contexts. A(q), B(q), and
C(q) are polynomials. nA, nB , and nC are the number
of coefficients in these polynomials that in general are
different from 1. The A(q) and C(q) polynomials are
monic polynomials, i.e. the coefficient of their highest
order term is 1.

Def. 4 (ARX Model Form). Eq. (8) defines the general
form of ARX models [2].

A(q)yk = B(q)uk + εk (8)

The A(q) polynomial is monic.

Def. 5 (Orthogonal Projection). The orthogonal pro-
jection of matrix G onto matrix H , G/H , is defined as
in Eq. (9) [5].

G/H
def= GHT (HHT )†H (9)

In Eq. (9), the super-script † refers to the Moore-
Penrose pseudo-inverse.

Def. 6 (Complement of Orthogonal Projection). The
complement of the orthogonal projection of matrix G
onto matrix H , GH⊥, is defined as in Eq. (10) [5].

GH⊥
def= G−G/H def= G−GHT (HHT )†H (10)
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Def. 7 (Hankel Matrix). Let st ∈ Rnr×nc be a matrix
of data sampled at timestep t. The Hankel matrix St0|L,

organizing timeseries of st starting at timestep t0, i.e.
st0 , st0+1, . . ., is defined as in Eq. (11).

St0|L
def=


st0 st0+1 . . . st0+K−1

st0+1 st0+2 . . . st0+K

...
...

. . .
...

st0+L−1 st0+L . . . st0+L+K−2

 ∈ RLnr×Knc (11)

In Eq. (11), L is the number of block rows in St0|L and
K is the number of block columns in St0|L [5].

Def. 8 (Lower Block Triangular Toeplitz Matrix for the

Quadruple (D̃, Ã, C̃, F̃ )). The lower block triangular
Toeplitz matrix for the quadruple (D̃, Ã, C̃, F̃ ) is de-
fined as in Eq. (12) [5].

Hs
L

def=


F̃ 0m×m 0m×m . . . 0m×m
D̃C̃ F̃ 0m×m . . . 0m×m
D̃ÃC̃ D̃C̃ F̃ . . . 0m×m
...

...
...

. . .
...

D̃ÃL−2C̃ D̃ÃL−3C̃ D̃ÃL−4C̃ . . . F̃

 ∈ RLm×Lm (12)

In Eq. (12), L is the number of block rows and block
columns in Hs

L.

3 The DSR E Algorithm
This section gives a brief derivation of the DSR E sub-
space system identification algorithm. A comprehen-
sive presentation of DSR E is provided by [1]. DSR E
is also presented in [4].

In [5] it is proved that for linear time-invariant (LTI)
systems the innovation process, εk, can be identified
directly from previous inputs, u−∞, . . . , uk−1, and pre-
vious outputs, y−∞, . . . , yk−1, without relying on mod-
els. The DSR E algorithm presented in [1, 4] is based on
this proof. A MATLAB implementation of the DSR E
algorithm is available in the DSR Toolbox for MAT-
LAB ([6]). The DSR E algorithm consists of two steps:

1. The innovation process, εk, is identified by orthog-
onal projection of the current output, yk, onto in-
puts and outputs from the J preceding samples, i.e.
uk−J , . . . , uk−1 and yk−J , . . . , yk−1. Here J is a
parameter to the DSR E algorithm. The comple-
ment of this orthogonal projection is the identified
innovation process, εk [1, 4]. Please refer to Sub-
sec. 3.1 for details.

2. The identified innovation process, εk, is consid-
ered as a known deterministic input. Hence,
the deterministic / stochastic system identification
problem is reduced to a deterministic system iden-
tification problem [1, 4]. In the DSR E algo-
rithm presented in [1], this deterministic problem
is solved by a deterministic sub-space system iden-
tification algorithm.

The the following parameters are most important with
respect to the DSR E algorithm and its derivation [5, 1,
4]:

1. L - the number of block rows in the Toeplitz ma-
trices and some of the Hankel matrices to be used
in the second step of the DSR E algorithm, i.e. L
has the same meaning as in Eq. (11) and Eq. (12).

2. g - if the system is strictly proper, i.e. E = 0m×r,
then g is set to 0. Otherwise g is set to 1.

3. J - the number of preceding inputs and outputs
used to identify the innovation process. Please re-
fer to Subsec. 3.1 for details.

In addition to parameters L, g, and J , the model or-
der, n, of the model to be identified by DSR E has to
be specified to the DSR E implementation of the DSR
Toolbox for MATLAB ([6]).

3.1 Step 1 of the DSR E Algorithm

Let U0|J , UJ|L+g−1, Y0|J , YJ|L, and EJ|L be Han-
kel matrices according to Def. 7. The input vector
u ∈ Rr×1 is the block elements of the matrices U0|J
and UJ|L+g−1. The output vector y ∈ Rm×1 is the
block elements of the matrices Y0|J and YJ|L. The
white noise vector e ∈ Rm×1 is the block elements of
matrix EJ|L. In [5], Eq. (13) is proved. This proof will
not be repeated in here.

lim
J,K→∞

YJ|L − YJ|L/

 UJ|L+g−1

U0|J
Y0|J

 (13)

= lim
J,K→∞

Hs
LEJ|L

Please note that the mathematical derivation of Eq. (13)
requires that J → ∞ and K → ∞, where K is the
number of columns in the Hankel matrices of Eq. (13).
In Sec. 7 the consequences of finite values of J and
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K are considered. Choosing L = 1 and g = 0 gives
Eq. (14) [1, 4].

 UJ|L+g−1

U0|J
Y0|J

 =

 UJ|0
U0|J
Y0|J

 =
[
U0|J
Y0|J

]
(14)

The equality between the middle and the rightmost
terms of Eq. (14) is due to UJ|0 ∈ R0×K . For L = 1
the Toeplitz matrix of Def. 8 reduces to
Hs

1 ∈ Rm×m ⇒ Hs
1 = F̃ . Hence, Eq. (13) can be

written as Eq. (15) [1, 4].

lim
J,K→∞

YJ|1 − YJ|1/
[
U0|J
Y0|J

]
= lim

J,K→∞
F̃EJ|1 (15)

= lim
J,K→∞

F̃ [ eJ eJ+1 . . . eJ+K−1 ]

= lim
J,K→∞

[ εJ εJ+1 . . . εJ+K−1 ]

= lim
J,K→∞

εJ|1

In Eq. (15), εJ|1 is the Hankel matrix of which block
elements are the innovation process ε ∈ Rm×1.

3.2 Step 2 of the DSR E Algorithm

As the innovation process is identified in Eq. (15), the
deterministic / stochastic system identification problem
of Eq. (5) and Eq. (6) reduces to a deterministic prob-
lem. For strictly proper systems, i.e. Ẽ = 0m×r, the
system identification problem is now on the form of
Eq. (16) and Eq. (17) [1, 4].

xk+1 = Ãxk +
[
B̃ K̃

] [ uk
εk

]
(16)

yk − εk = D̃xk (17)

Step 2 of the DSR E algorithm as presented in [1] is
to solve the deterministic system identification problem
of Eq. (16) and Eq. (17) using a deterministic sub-space
system identification algorithm.

4 Relating Orthogonal Projection to the
Ordinary Least Squares Method

The key to understand that the first step of the DSR E
algorithm is mathematically identical to the single-step
ARX algorithm is the relation between orthogonal pro-
jection (Def. 5) and the ordinary least squares (OLS)
method. Consider the linear regression problem of
Eq. (18).

Y = XB + E (18)

In Eq. (18), the elements ofX ∈ RN×b and Y ∈ RN×a
are known data. The regression matrix B ∈ Rb×a
is to be identified. E ∈ RN×a is the residual of
the linear regression. Assume that N ≥ b and that
rank(X) = b. Then rank(XTX) = b, which is full
rank. For a quadratic matrix of full rank, i.e. an in-
vertible matrix, the Moore-Penrose pseudo inverse is

equivalent to the inverse, i.e. (XTX)† = (XTX)−1.
Transposing Eq. (18) gives Eq. (19).

Y T = BTXT + ET (19)

Solving the linear regression problem of Eq. (19) using
OLS gives Eq. (20).

BT = Y TX(XTX)−1 (20)

Inserting Eq. (20) into Eq. (19) gives Eq. (21).

Y T = Y TX(XTX)−1︸ ︷︷ ︸
B

XT + ET (21)

Because (XTX)† = (XTX)−1, the first term on the
right hand side of Eq. (21) is identical to the right hand
side of Eq. (9), where Y T = G and XT = H . Hence,
according to Def. 5, Eq. (21) can be written as Eq. (22).

Y T = Y T /XT + ET (22)

Further, using Def. 6 gives Eq. (23).

Y TXT⊥ = Y T − Y T /XT = ET (23)

Conclusions: (i) The orthogonal projection Y T /XT is
equivalent to the part of Y that can be explained by an
OLS regression of Y onto X . (ii) The complement of
the orthogonal projection, Y TXT⊥, is equivalent to the
residual of this OLS regression, E.

5 The ARX Algorithm
The term ARX may refer to (i) the model form of
Eq. (8) or (ii) a system identification algorithm used to
identify models on the form of Eq. (8). This section
gives a brief introduction to the ARX algorithm.
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For single input, single output (SISO), strictly proper
systems, Eq. (8) can be written on the form of Eq. (24).
It has here been used that q−1yk = yk−1, where q is the

time shift operator of the Z transform. Eq. (24) can be
rewritten as Eq. (25).

yk + a1yk−1 + a2yk−2 + . . .+ anA
yk−nA

= b1uk−1 + b2uk−2 + . . .+ bnB
uk−nB

+ εk (24)

yk = −a1yk−1 − a2yk−2 − . . .− anA
yk−nA

+ b1uk−1 + b2uk−2 + . . .+ bnB
uk−nB

+ εk (25)

The polynomial coefficients, a1, a2, . . . , anA
and

b1, b2, . . . , bnB
, can be estimated by stacking timeseries

of y and u in the Y and X matrices of Eq. (18) as

shown in Eq. (26), and then solve this OLS problem
with respect to the ARX parameter vector, θ, which cor-
responds to the regression matrix, B, of Eq. (18).



...
yk

yk+1

yk+2

...


︸ ︷︷ ︸

Y

(26)

=



...
...

. . .
...

...
...

. . .
...

−yk−1 −yk−2 . . . −yk−nA
uk−1 uk−2 . . . uk−nB

−yk −yk−1 . . . −yk−nA+1 uk uk−1 . . . uk−nB+1

−yk+1 −yk . . . −yk−nA+2 uk+1 uk . . . uk−nB+2

...
...

. . .
...

...
...

. . .
...


︸ ︷︷ ︸

X



a1

a2

...
anA

b1

b2

...
bnB


︸ ︷︷ ︸

θ

+



...
εk

εk+1

εk+2

...


︸ ︷︷ ︸

E

In Eq. (26), Y ∈ RP×1, X ∈ RP×(nA+nB), θ ∈
R(nA+nB)×1, and E ∈ RP×1, where P is the number
of rows in Y , X , and E.

The ARX system identification problem of Eq. (26)
can be generalized to multiple input, multiple output
(MIMO) systems as shown in Eq. (27).
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...
yTk

yTk+1

yTk+2
...


︸ ︷︷ ︸

Y

(27)

=



...
...

. . .
...

...
...

. . .
...

−yTk−1 −yTk−2 . . . −yTk−nA
uTk−1 uTk−2 . . . uTk−nB

−yTk −yTk−1 . . . −yTk−nA+1 uTk uTk−1 . . . uTk−nB+1

−yTk+1 −yTk . . . −yTk−nA+2 uTk+1 uTk . . . uTk−nB+2
...

...
. . .

...
...

...
. . .

...


︸ ︷︷ ︸

X

Θ +



...
εTk

εTk+1

εTk+2
...


︸ ︷︷ ︸

E

In Eq. (27), Y ∈ RP×m, X ∈ RP×(mnA+rnB), Θ ∈
R(mnA+rnB)×m, andE ∈ RP×m, where P is the num-
ber of rows in Y , X , and E. The notation Θ is used for
the ARX parameter matrix, which is to be identified by
the OLS method.

Solving the linear regression problem of Eq. (26) or
Eq. (27) with respect to θ or Θ, respectively, is the
system identification algorithm referred to as single-
step ARX. There also exist various multi-step ARX
algorithms. These algorithms involve solving several
single-step ARX problems. A two-step ARX identifi-
cation algorithm is derived in Sec. 6.

6 Approximating the DSR E Algorithm
Using a Two-Step ARX Algorithm

This section shows that the DSR E sub-space system
identification algorithm can be approximated by a two-

step ARX algorithm.

6.1 Approximating Step 1 of the DSR E Algorithm

Consider Eq. (15), using the final right hand side term:
As the requirements J → ∞ and K → ∞ can not
be met in any practical system identification problems,
the limit notation is removed and the true innovation
process, ε, is replaced by the identified (in general not
exact) innovation process, ε. Further, Eq. (15) is re-
arranged by: (i) The last term on the left hand side is
rewritten using Def. 5 and moved to the right hand side.
(ii) The equation is transposed. Eq. (15) is then written
as Eq. (28). The underbraces of Eq. (28) is on the form
of Eq. (18), where the regression matrix, B, is replaced
by the ARX parameter matrix, Θ. The structures of the
regression matrices of Eq. (28) are shown in Eq. (29)
and Eq. (30).

Y TJ|1︸︷︷︸
Y

=
[
U0|J
Y0|J

]T
︸ ︷︷ ︸

X

([
U0|J
Y0|J

] [
U0|J
Y0|J

]T)−1 [
U0|J
Y0|J

]
Y TJ|1︸ ︷︷ ︸

Θ

+ εTJ|1︸︷︷︸
E

(28)

Y TJ|1 =


yTJ

yTJ+1

...

yTJ+K−1

 ∈ RK×m (29)
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[
U0|J
Y0|J

]T
=


uT0 , uT1 , . . . , uTJ−1, yT0 , yT1 , . . . , yTJ−1

uT1 , uT2 , . . . , uTJ , yT1 , yT2 , . . . , yTJ

...
...

. . .
...

...
...

. . .
...

uTK−1, uTK , . . . , uTK+J−2, yTK−1, yTK , . . . , yTK+J−2

 (30)

∈ RK×(r+m)J

The right hand sides of Eq. (29) and Eq. (30) are recog-
nized as the matrices for linear regression of a strictly
proper ARX model where nA = nB = J : Choosing
nA = nB = J in Eq. (27) gives that Y andX as under-
braced in Eq. (27) are identical to Eq. (29) and Eq. (30)
respectively. Comparing X as underbraced in Eq. (27)
to Eq. (30) shows that: (i) The arrangement (order) of
the block columns is different and (ii) the signs (plus or
minus) of the y block elements are different. However,
this will not affect the orthogonal projection as it does
not affect the information available in each row of the
matrices. Hence, Eq. (28) is identical to a strictly proper
ARX model written on OLS regression form. This re-
gression can be written as Eq. (31).

Y TJ|1 =
[
U0|J
Y0|J

]T
Θ + εTJ|1 (31)

The main point of this derivation is obtained by rewrit-
ing Eq. (31) as Eq. (32).

εTJ|1 = Y TJ|1 −
[
U0|J
Y0|J

]T
Θ (32)

Eq. (32) proves that the innovation process identified by
the DSR E method, ε, is mathematically identical to the
residual of a strictly proper ARX model where nA =
nB = J . This residual can also be expressed as the one-
step-ahead prediction errors in a simulation running the
ARX model on its own training dataset. It has now been
proved that the first step of the DSR E algorithm can be
replaced by the single-step ARX algorithm.

6.2 Approximating Step 2 of the DSR E Algorithm

Similar to the DSR E algorithm, the DARX algorithm
considers the identified innovation process, ε, as a
known deterministic input. The deterministic / stochas-
tic system identification problem has then been reduced
to a deterministic system identification problem. This
deterministic system can be written on the ARMAX
form, Eq. (7), replacing the true (but unknown) in-
novation process, ε, by the identified innovation pro-
cess, ε, which in general is not exactly identical to
the true innovation process. The model is then on the
form of Eq. (33). Assume for simplicity that a sin-
gle input, single output (SISO) system is to be mod-
eled using a strictly proper ARMAX model of which
nA = nB = nC = n. Hence, the ARMAX polynomi-
als are given by Eq. (34) to Eq. (36).

A(q)yk = B(q)uk + C(q)εk (33)

A(q) = 1 + a1q
−1 + . . .+ anq

−n (34)

B(q) = b1q
−1 + . . .+ bnq

−n (35)

C(q) = 1 + c1q
−1 + . . .+ cnq

−n (36)

Inserting Eq. (34) to Eq. (36) into Eq. (33) and using
that q−1yk = yk−1 gives Eq. (37). Eq. (37) can be
rewritten as Eq. (38). Writing Eq. (38) on linear regres-
sion form gives Eq. (39). The number of equations in
this linear regression problem is K −n, where K is the
number of rows in Eq. (29) and Eq. (30).

yk + a1yk−1 + . . .+ anyk−n = b1uk−1 + . . .+ bnuk−n + εk + c1εk−1 + . . .+ cnεk−n (37)

yk − εk = −a1yk−1 − . . .− anyk−n + b1uk−1 + . . .+ bnuk−n + c1εk−1 + . . .+ cnεk−n (38)
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yJ+n − εJ+n

yJ+n+1 − εJ+n+1

...
yK+J−1 − εK+J−1

 (39)

=


−yJ+n−1, . . . , −yJ , uJ+n−1, . . . , uJ , εJ+n−1, . . . , εJ
−yJ+n, . . . , −yJ+1, uJ+n, . . . , uJ+1, εJ+n, . . . , εJ+1

...
. . . ,

...
...

. . . ,
...

...
. . . ,

...
−yK+J−2, . . . , −yK+J−n−1, uK+J−2, . . . , uK+J−n−1, εK+J−2, . . . , εK+J−n−1





a1

...
an
b1
...
bn
c1
...
cn



The ARX regression problem of Eq. (39) identifies not
only the A(q) and B(q) polynomials, but also the C(q)
polynomial. Hence, the identified model is an ARMAX
model on the form of Eq. (33). An ARMAX model
can be converted to a state space model on the form of
Eq. (5) and Eq. (6) and vice versa. Hence, the ARMAX
model identified by solving the ARX regression prob-
lem of Eq. (39) can be converted to a state space model
as generated by the DSR E algorithm presented in [1].

It has now been shown that: (i) The innovation process
identified by the first step of the DSR E algorithm, ε,
is mathematically identical to the residual of an ARX
identification where nA = nB = J . (ii) The second
step of the DSR E algorithm, as presented in [1], can
be replaced by ARX identification. From (i) and (ii) it
is concluded that the DSR E algorithm can be approxi-
mated by a two-step ARX algorithm. The model iden-
tified by this approximation is an ARMAX model.

7 The Influence of Number of Samples,
N , and the Parameter J

Consider Eq. (29) and Eq. (30): The lowest sample in-
dex used is 0 (in u0 and y0) and the highest sample in-
dex used is J+K−1 (in yJ+K−1). Hence, the number
of samples, N , used to identify the innovation process
is given by N = K + J .

As the mathematical derivation from [5] requires that
J → ∞ and K → ∞, it is also implicitly requires that
N → ∞. These requirements can not be met in any
practical system identification problems. In practical
problems the number of samples, N , is given by the
dataset. It is then a consideration to choose a proper
value of J . K is then given by K = N − J .

Consider a single input, single output (SISO) system.
Then the OLS regression problem of Eq. (28) has
2J+K unknown values: (i) A SISO ARX model where
nA = nB = J has 2J unknown parameters, i.e. J coef-
ficients in theA(q) polynomial and J coefficients in the
B(q) polynomial. (ii) Unknown innovation processes

for K samples. The number of equations in the OLS
problem is K. By choosing J too large, the identified
innovation process, ε, will be smaller (absolute value)
than the true innovation process, ε. This can be illus-
trated by an extreme choice of J : Choosing J = N/3.
Then the ARX model will have 2J = 2N/3 parame-
ters. The number of equations in the OLS regression
problem will be K = N − J = N − N/3 = 2N/3.
Assuming that these 2N/3 equations are linearly inde-
pendent, the number of parameters to be identified in
the OLS regression is equal to the number of linearly
independent equations. Hence, the OLS problem is re-
duced to a deterministic set of linear equations. Then
the residual, i.e. the identified innovation process, ε,
will be zero regardless of the true innovation process,
ε. On the other hand, choosing J too low will also con-
flict the derivation of [5].

In order to quantify the fit of the identified innovation
process, ε, to the true innovation process, ε, the fit cri-
terion W (N, J) of Eq. (40) has been defined.

W (N, J) def=
1

N − J

N∑
k=J+1

(εk − εk(N, J))2 (40)

Two datasets were generated by simulations using a
SISO ARMAX model where nA = nB = nC = 6.
During the simulations, a pseudo random binary sig-
nal (PRBS) was applied to the deterministic input, u. A
uniformly distributed random number sequence was ap-
plied for simulating of the innovation process, ε. Differ-
ent amplitude of the innovation process, ε, was applied
for dataset no. 2 compared to dataset no. 1. Otherwise
the datasets were generated using identical conditions.

For both datasets, W (N, J) was plotted as function
of J for N = 350, N = 1, 000, N = 3, 000, and
N = 10, 000, i.e. total eight J versus W (N, J) plots.
These plots are shown in Fig. 1 and Fig. 2. In Fig. 1 the
innovation process, ε, is uniformly distributed in the in-
terval [−0.05, 0.05]. In Fig. 2 the innovation process is
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Fig. 1 The figure shows W (N, J) plotted as function
of J for N = 350, N = 1, 000, N = 3, 000 and
N = 10, 000. The innovation process, ε, is uniformly
distributed in the interval [−0.05, 0.05].

uniformly distributed in the interval [−0.15, 0.15]. In
other words: In Fig. 2 the amplitude of the innovation
process is three times higher than in Fig. 1. Please note
that the figures have different scaling of their respective
Y-axes.

Based on the plots shown in Fig. 1 and Fig. 2, it seems
reasonable to draw the following conclusions:

1. Increased value ofN gives better match between ε
and ε for the optimal choice of J , i.e. the value of J
giving the lowest W (N, J). This is to be expected
because the derivation from [5] assumes N →∞.

2. When ignoring some high frequency variations
(”noise”) on the curves, it seems (but can not be
stated) that: (i) There is exact one minimum on
each curve. (ii) The curves are strictly increas-
ing as moving away from these minimums. This
seems reasonable according to the discussion for
choice of J above.

3. As N increases the optimal choice of J , i.e. the
value of J giving the minimum of W (N, J), also
increases. This is reasonable: As N increases,
the number of equations in the OLS problem of
Eq. (28) also increases. Hence, the number of
coefficients in the ARX model, 2J , may increase
without over-fitting the model.

4. As the amplitude of the innovation process, ε, in-
creases, the fit criterion, W (N, J), also increases.
This is reasonable: When ε and ε in general have
larger values, also the difference between these
values will be larger.

8 Comparing DSR E and DARX on In-
dustrial Data

The DSR E and DARX algorithms have been compared
on experimental data from the copper refining process

Fig. 2 The figure shows W (N, J) plotted as function
of J for N = 350, N = 1, 000, N = 3, 000 and
N = 10, 000. The innovation process, ε, is uniformly
distributed in the interval [−0.15, 0.15].

of Xstrata Nikkelverk, Kristiansand, Norway. A sin-
gle input, single output (SISO) system was modeled us-
ing DSR E and DARX. The input, u, is the mass flow
from the roasting furnace to the copper leaching pro-
cess. The output, y, is the concentration of sulphuric
acid, H2SO4, in the flow from the copper leaching pro-
cess to the electro winning. Before system identifica-
tion, the input and output dataseries were preprocessed
by (i) removing outliers, (ii) subtracting mean value,
(iii) dividing by standard deviation, and (iv) compen-
sating for the time delay form the input, u, to the out-
put, y, by shifting the input dataseries with respect to
the output dataseries. For DSR E, the parameters were
chosen as L = n = 20, g = 0, and J = 30. For
DARX, the parameters were chosen as J = 30 and
nA = nB = nC = 20. The DSR E implementation of
the DSR Toolbox for MATLAB ([6]) was used for iden-
tifying the DSR E model. For identifying the DARX
model, a MATLAB implementation of the DARX algo-
rithm was written.

Based on the models identified by DSR E and DARX,
ballistic simulations were run. Fig. 3 compares these
simulations to the actual measured sulphuric acid con-
centration. The ballistic simulations fit the measured
data poorly. This is to be expected because there are
several other factors influencing the concentration of
sulphuric acid that are not included in the models. By
comparing the identified models to the model proper-
ties expected based on process knowledge, it has been
verified that the modeled transfer functions have correct
signs (in this case minus) and correct stability proper-
ties (in this case integrating).

The main point of this experiment is to show that DSR E
and DARX give identical models: Fig. 3 shows that the
model responses are identical when applying the mass
flow signal, u, to the model inputs. Even though the
values of the ballistic simulations vary within approx-
imately ±1.3, the maximum difference between the
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Fig. 3 The figure compares ballistic simulations using
the models identified by DSR E and DARX. The ac-
tual measured sulphuric acid concentration, after being
preprocessed, is also shown.

DSR E based simulation and the DARX based simula-
tion is only 3.3×10−11. This is a very strong indication
that the models are identical.

To verify that the models actually are identical, the
pole / zero plots and the step responses were also com-
pared. Both the deterministic models, i.e. the trans-
fer functions from u to y, and the noise models, i.e.
the transfer functions from ε to y, were compared by
pole / zero plots and step response plots. These plots
are not shown in this paper. To the resolution of the
plots, it was not possible to distinguish the models, nei-
ther by the pole / zero plots nor by the step response
plots. It is then concluded that the models are identical
beyond the model accuracy that can be expected from
such modeling techniques.

9 Conclusions
The DSR E sub-space system identification algorithm
can be approximated by a two-step ARX algorithm.
The first step of the DSR E algorithm is mathemati-
cally identical to the identification of a strictly proper
ARX model of which nA = nB = J : The innovation
process identified by DSR E is identical to the residual
of the ARX identification. During the second step of
the DSR E algorithm the deterministic / stochastic sys-
tem identification problem is reduced to a deterministic
problem by considering the identified innovation pro-
cess as a known deterministic input. In the DSR E al-
gorithm, as presented in [1], this deterministic problem
is solved by a deterministic sub-space system identifi-
cation algorithm. However, this problem may instead
be solved using the single-step ARX algorithm. Hence,
each of the two steps of the DSR E algorithm may be
replaced by the single-step ARX algorithm. This al-
lows DSR E to be approximated by a two-step ARX
algorithm.

The mathematical derivation of DSR E requires that

N → ∞ and J → ∞, where N is the number of
samples and J is as presented above. These require-
ments can not be met in any practical system identifi-
cation problems. Simulations presented in this paper
show that the innovation process is identified more ac-
curately as N increase. The optimal choice of J , i.e.
the value of J that gives the most accurate identifica-
tion, increases as N increases.

The DSR E algorithm and its two-step ARX approx-
imation were compared by modeling a section of the
copper refining process at Xstrata Nikkelverk, Kris-
tiansand, Norway. The model identified by the DSR E
algorithm and the model identified by the approxima-
tion are identical beyond the model accuracy that can
be expected from such modeling techniques.
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