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Abstract 

Simulation and prediction of eigen-
frequencies and resonance problems for 
flexible structures is an important task in 
disciplines such as robotics and aerospace 
engineering. However, little effort seems to 
have been put into the problem dealing with 
modal analysis of mechatronic systems 
containing coupled flexible structures and 
control systems. When, for instance, 
designing a satellite tracking radar, it is 
crucial to be able to predict resonance in the 
radar system during normal working 
conditions. Resonance may lead to loss of 
satellite tracking accuracy and long term 
fatigue problems.  
 
This paper addresses the theory of solving 
the eigenvalue problem for a simple one-
degree-of-freedom system coupled with a 
single position feedback PD-controller. To 
test the theory, the nonlinear multi-
disciplinary simulation software FEDEM has 
been used. This paper is planned as the first 
in a series of papers addressing modal 
analysis of active flexible multibody systems.  
 
Keywords:  
Modal analysis, eigenvalue problem, flexible 
multibody system, PD-controller. 

1 Introduction 

To optimize performance and reduce development 
costs of mechatronic products, it is very important to 
use virtual testing. During the later years, mechanical 

products have become increasingly complex and 
mechanical functionality has gradually been replaced 
by cheaper and smarter control (active) systems. 
Typical examples are active / adaptive car 
suspensions, cranes, robots, machining centers, 
airplanes and satellites. 
 
Mechatronic systems are traditionally designed and 
tested in separate software systems since the 
underlying mathematics used to solve the subsystems 
are different. Control systems are often modeled as 1st 
order equation systems (state-space-formulation), 
while mechanical systems usually are modeled as 2nd 
order symmetrical equation systems. These 
subsystems are therefore traditionally solved 
decoupled by different equation solvers. This 
approach has several disadvantages: 
 
• The subsystems become sub-optimized because 

the couplings between them are limited. Control 
systems are often modeled as lumped springs and 
dampers in the mechanical subsystem and 
mechanical components are simplified as lumped 
masses, inertias and amplifiers in the control 
subsystem. The couplings between them are 
established through iterations and interchanges 
of force and response variables. The performance 
of the combined mechatronic system can thus not 
be simulated and optimized with a satisfactory 
accuracy and efficiency. 
 

• The mechanical system and the control system 
are mutually affected by each other. Changes in 
either of the systems will cause alterations in the 
other. This means that the two mathematical 
models must be updated separately, which is 
both time consuming and demands coordination 
and handling of different software versions 
between engineers from different departments. 
 

• A decoupled model representation does not 
support calculations of eigenfrequencies and 
mode shapes (modal analysis), which give 
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engineers vital information about the overall 
performance of a mechatronic system. 

 
A literature survey performed by the authors indicated 
that little effort has been put into the problem dealing 
with modal analysis of mechatronic systems 
containing flexible structures, like robots, cranes, 
suspension and aerospace systems. However, the topic 
has been discussed in some papers and reports. In [1] 
it is shown that when combining passive mechanical 
springs and active piezoelectric springs, the total 
stiffness of the system is a sum of the stiffness from 
each of the springs, as can be expected based on basic 
theory of dynamics. In [2] it is shown that actuators 
can be controlled to act like virtual passive mechanical 
spring-damper elements using a velocity feedback PI-
controller. In [3] it is shown that in contact motion 
force control, both the gain from a controller and the 
stiffness of the structure influences the natural 
frequency of the system. In [4] it is mentioned that a 
position feedback PD-controller is physically 
equivalent to a virtual spring and damper whose 
reference position is moving with a desired velocity. 
 
This paper focuses on eigenfrequency analysis for a 
mechanical system with one degree of freedom, 
combined with a position feedback PD-controller. 
First, a basic description of the PD-controller is given. 
Next, different variants of the one-degree-of-freedom 
system combining the PD-controller and the 
mechanical system are described, and an equation for 
the eigenfrequency of these systems is given. Finally, 
results derived from the eigenfrequency equation for a 
total of six different scenarios are compared to 
experimental tests performed in the nonlinear multi-
disciplinary simulation software FEDEM [5].  

2 The PD-controller 

Fig. 1 shows a simple block diagram used for 
describing a single-input single-output (SISO) feed-
back control system: 

 
Fig. 1 Block diagram for a single-input single output 

(SISO) feedback control system. 

The whole idea behind a control system is to 
manipulate a physical process to behave in a certain 
desired way. ݕ is the reference value for a parameter 
in the physical process and represents how this 
parameter should behave; ݕ is the measured value for 
the same parameter and represents how this parameter 
actually is behaving. In a steady-state process, the aim 
is to keep the process as stable as possible, 
suppressing the disturbances ݒ acting on the process 
as effectively as possible.  

As shown in the block diagram, the difference ݁ 
between the reference value ݕ and a measured value ݕ is given by: 
 ݁ ൌ ݕ െ   (1) ݕ
 ݁ is somehow manipulated in the controller, and out 
comes a controller value ݑ. This controller value is 
added with the disturbance ݒ on the physical process. 
When combined, ݑ and ݒ make up the input value for 
the parameter in the physical process. The output 
value from the physical process is the measured value ݕ, which is then compared to the reference value ݕ, 
and the loop repeats itself.  
 
The function of the controller is to manipulate the 
physical process so that it behaves in the most 
satisfactory way. One common approach to achieving 
this goal is to construct the controller with a 
combination of a proportional part (P), an integral part 
(I) and a derivative part (D). Based on the controller’s 
incoming value ݁ሺݐሻ, the outgoing controller value ݑሺݐሻ for each of the three parts is, respectively: 
 
ሻݐሺݑ  ൌ   ሻ (2)ݐ݁ሺܭ
 

ሻݐூሺݑ  ൌ ܭ න ݁ሺ߬ሻ݀߬௧
  (3)  

 

ሻݐሺݑ  ൌ ௗܭ ݀݁ሺݐሻ݀ݐ  (4)  

 
where ܭ, ܭ and ܭௗ are the proportional, integral and 
derivative gains, respectively. 
 
If combined, the different parts give the following 
equation for the outgoing controller value ݑሺݐሻ: 
 

 
ሻݐூሺݑ ൌ ሻݐ݁ሺܭ  ܭ න ݁ሺ߬ሻ݀߬௧

 ௗܭ ݀݁ሺݐሻ݀ݐ  
(5)  

 
If the integral gain ܭ and derivative gain ܭௗ are given 
by: 
 

ܭ  ൌ ܶܭ  (6)  

ௗܭ  ൌ ܭ ௗܶ (7)  

then Eq. (5) can be written as: 
 

 
ሻݐூሺݑ ൌ ܭ ቆ݁ሺݐሻ  1ܶ න ݁ሺ߬ሻ݀߬௧

 ௗܶ ݀݁ሺݐሻ݀ݐ ቇ 
(8)  

 

Controller Physical 
process

ݑ ݁ ݕ െݕ ݒ
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The outgoing controller value ݑሺݐሻ for a PD-
controller, which only has a proportional and a 
derivative part, is: 
 

ሻݐሺݑ  ൌ ሻݐ݁ሺܭ  ௗܭ ݀݁ሺݐሻ݀ݐ  (9)  

3 System with one degree of freedom 

Fig. 2 illustrates three linear systems with one degree 
of freedom: a passive, an active and a coupled system. 
The passive system in Fig. 2 (a) is a mass-spring-
damper system. The active system in Fig. 2 (b) 
contains only a mass and a controller. The coupled 
system in Fig. 2 (c) is a combination of the active and 
the passive system. 
 

 
Fig. 2 Systems with one degree of freedom; (a) 

passive system, (b) active system, (c) coupled system. 

All of the systems shown in Fig. 2 have the same 
degree of freedom: the position ݔ of the mass ݉. 
Since these systems only have one degree of freedom, 
they will only have one eigenfrequency with one 
corresponding mode shape (oscillation).  

3.1 Passive system 

Fig. 3 illustrates a passive system with one degree of 
freedom. This is a system consisting of mechanical 
parts only. 

 
Fig. 3 Passive system with one degree of freedom. 

The dynamic equation of motion for the passive 
system is: 
 
ሻݐሷሺݔ݉   ሶݔܿ ሺݐሻ  ሻݐሺݔ݇ ൌ   ሻ (10)ݐሺܨ
 
where ݉ is the mass in kg, ܿ is the damping 
coefficient in Ns/m, ݇ is the spring stiffness in N/m 
and ܨ is an external force in N acting on the system. ݔ ,ݔሶ  and ݔሷ  are the position, velocity and acceleration 
of the mass, respectively.  
 

ሻݐሶሺݔ  ൌ ݐሻ݀ݐሺݔ݀ , ሷݔ ሺݐሻ ൌ ݀ଶݔሺݐሻ݀ݐଶ  (11)  

When calculating the eigenvalue of the system, all the 
external forces ܨ are set to zero. The dynamic 
equation for the system thus becomes: 
 
ሷݔ݉   ሶݔܿ  ݔ݇ ൌ 0 (12)  
 
The eigenfrequency of an undamped system (ܿ ൌ 0) is 
then given by: 
 

 ߱ ൌ ඨ ݇݉
 (13)  

 
If the system is damped, the eigenfrequency is given 
by [6]: 
 

 ߱,ௗ ൌ ߱ඥ1 െ ଶߞ ൌ ට  · ඥ1 െ   ଶ  (14)ߞ

 
where ߞ is the damping ratio (ߞ ൌ  ൌ ଶ√).  

3.2 Active system 

Fig. 4 illustrates an active system with one degree of 
freedom. This system is almost identical to the passive 
system shown in Fig. 3. However, as a crucial 
difference, the spring and damper have been replaced 
by a control system, in this case a standard PD-
controller. 
 

 
Fig. 4 Active system with one degree of freedom. 

The dynamic equation of motion for the active system 
is: 
 

ሻݐሷሺݔ݉   ሻݐሶሺݔ0  ሻൌݐሺݔ0 ሻݐሺܨ    ሻ (15)ݐሺܨ

 
where ܨ is the force from the PD-controller acting 
on the mass ݉. 
 
When calculating the eigenvalues of the system, the 
dynamic equation has now become: 
 
ሷݔ݉   ሶݔ0  ݔ0 ൌ 0 (16)  
 
This implies that, from a classical mechanical point of 
view, the system does not have any eigenvalues since 
the elastic part of the dynamic equation is equal to 
zero. Thus the undamped eigenfrequency should be: 
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 ߱ ൌ ඨ ݇݉ ൌ ඨ 0݉ ൌ 0 (17)  

 
However, when observing the active system, it is 
obvious that the system does have an eigenfrequency. 
A simple active system, in accordance to Fig. 4, was 
created and dynamically simulated in FEDEM, with 
no initial equilibrium iterations. The following figure 
illustrates the position of the mass ݉ in the active 
system when under influence of a constant force ܨ 
(equaling gravity). The mass was set to 1 kg and, for 
simplicity, the force was set to 10 N.  
 
For the PD-controller, the proportional gain ܭ was 
set to 100, the derivative gain ܭௗ to 0 and the 
reference value ݕ representing the desired position of 
the mass to 0. 
 

 
Fig. 5 Position of the mass in the active system with 

Kp = 100 and Kd = 0. 

As Fig. 5 shows, the system clearly oscillates, even 
though the reference value ݕ is 0. This implies that 
the system does possess an eigenfrequency. 

3.3 Coupled system 

If the passive system in Fig. 3 is combined with the 
active system in Fig. 4 they form a coupled system, as 
shown in Fig. 6: 
 

 
Fig. 6 Coupled system with one degree of freedom. 

The dynamic equation of motion for the coupled 
system is: 
 

ሻݐሷሺݔ݉   ሶݔܿ ሺݐሻ  ሻൌݐሺݔ݇ ሻݐሺܨ    ሻ (18)ݐሺܨ

 
Fig. 7 shows a block diagram of the coupled system in 
Fig. 6: 

 
Fig. 7 Block diagram for a mass-spring-damper 

system and a PD-controller. 

In the block diagram, ݔ is the reference position for 
the mass ݉. ݁ is the difference between the reference 
position ݔ and the actual position ݔ:  
 
 ݁ ൌ ݔ െ   (19) ݔ
 
The PD-controller consists of a proportional part ܭ 
and a derivative part ܭௗ ௗௗ௧, as shown in Eq. (9). The 
outgoing value from the PD-controller is a force ܨ, 
which is added together with the force ܨ acting on the 
mass object, and forms the basis for the incoming 
value to the mass-spring-damper system. The mass-
spring-damper system is described by Eq. (18); its 
outgoing value is the position ݔ of the mass ݉. 
 
All of the forces acting on the system can be gathered 
into an equation containing the internal forces of the 
mechanical system on the left side and the external 
and controller forces on the right side: 
 
ܨ   ܨ  ܨ ൌ ܨ  ܨ     (20)ܨ
 
where ܨ is the inertia force, ܨ is the damping force, ܨ is the elastic force, ܨ is the external force, ܨ is the 
force from the proportional part of the controller and ܨ is the force from the derivative part of the 
controller. Eq. (20) can be rewritten to: 
 
ሷݔ݉   ሶݔܿ  ݔ݇ ൌ ܨ  ݁ܭ  ௗܭ ሶ݁ (21)  
 
where ሶ݁ follows the same notation as given in Eq. 
(11). If Eq. (19) is inserted into Eq. (21), it can now be 
written as: 
 

 
ሷݔ݉  ሶݔܿ  ݔ݇ ൌ ܨ  ݔ൫ܭ െ ൯ݔ ሶݔௗ൫ܭ െ  ሶ൯ݔ

(22)  

 
which is equal to: 
 

 
ሷݔ݉  ሶݔܿ  ݔ݇  ݔܭ  ሶൌݔௗܭ ܨ  ݔܭ    ሶ (23)ݔௗܭ

 
or: 
 

ሷݔ݉   ሺܿ  ሶݔௗሻܭ  ൫݇  ൌݔ൯ܭ ܨ  ݔܭ    ሶ (24)ݔௗܭ
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When calculating the eigenvalue of the system, the 
external force ܨ and the reference position ݔ is set 
to zero, giving the following equation: 
 
ሷݔ݉   ሺܿ  ሶݔௗሻܭ  ൫݇  ݔ൯ܭ ൌ 0 (25)  
 
The undamped and damped eigenfrequencies for the 
coupled system now becomes, respectively: 
 

 ߱ ൌ ඨ൫݇  ൯݉ܭ  (26)  

 

 ߱,ௗ ൌ ඨ൫݇  ൯݉ܭ · ඥ1 െ   ଶ (27)ߞ

 
where the damping ratio ߞ now has become:  
 

 
ߞ ൌ ሺܿ  ௗሻ2ܭ ቆට൫݇   ൯݉ቇܭ

(28)  

 
Eq. (26) and Eq. (28) correspond with formulas for 
effective natural frequency and effective damping 
ratio given in [6]. 

3.4 Experimental results 

To verify the theoretical results derived above, a 
simple test was created. The objective of the test was 
to see how the mass-spring-damper system and the 
PD-controller actually acted on the eigenfrequency of 
the coupled system. The testing environment was 
created in the nonlinear multidisciplinary simulation 
software FEDEM, rather than using actual physical 
equipment. A total of 6 different testing scenarios 
were created:  
 
Undamped 
I) Only a spring connecting the mass to the 

ground. 
II) Only a P-controller connecting the mass to the 

ground. 
III) A spring and a P-controller connecting the 

mass to the ground. 
 
Damped 
IV) A spring-damper system and P-controller 

connecting the mass to the ground. 
V) A spring and a PD-controller connecting the 

mass to the ground. 
VI) A spring-damper system and a PD-controller 

connecting the mass to the ground. 
 
An FE-model consisting of the coupled system shown 
in Fig. 6 was created in FEDEM. The external force ܨ 
was set to 10 N and the reference position ݔ to 0. 
The mass ݉ was set to 1 kg, the spring stiffness ݇ to 
100 N/m, the damping coefficient ܿ to 7.2 Ns/m, the 

proportional gain ܭ to 44 N/m and the derivative gain ܭௗ to 4.8 Ns/m. ݇ and ܭ, and also ܿ and ܭௗ, have 
deliberately been given different values, such that 
differences are easier to distinguish. With respect to 
Eq. (26), Eq. (27) and Eq. (28), this should give the 
eigenfrequencies listed in Tab. 1 (calculations are 
shown in the appendix). 
 
Fig. 8 and Fig. 9 show one graph from each of the six 
scenarios. The graphs picture the velocity of the mass ݉ versus the time. The reason for using the velocity of 
the mass rather than its position is that it makes it 
easier to see the period of the oscillation. One period 
is then where the velocity is zero for the second time. 
Since FEDEM uses a numerical algorithm to solve the 
dynamic equation of motion, the results are only 
accurate to a certain number of decimals. To balance 
between accuracy of results and simulation running 
time, the time increment in the simulations was set to 
0.0005 seconds. 

4 Discussion  

The results presented in Fig. 8 and Fig. 9 show that 
the eigenfrequencies from the simulations corresponds 
perfectly to the pre-calculated eigenfrequencies for the 
six different scenarios. As these results imply, the 
proportional gain ܭ and derivative gain ܭௗ from the 
PD-controller influences the stiffness and damping 
properties of the mechanical system, respectively. So, 
when performing an eigenvalue analysis for a 
mechanism coupled with a PD-controller, the 
proportional and derivative gain from the PD-
controller should somehow be added to the stiffness 
and damping properties of the system. One way of 
doing this is to add a virtual spring with spring 
stiffness ݇ corresponding to ܭ and a virtual damper 
with damping coefficient ܿ corresponding to ܭௗ to 
the mechanical model. Another approach is to 
establish and solve the eigenvalues using a set of 
coupled equations representing the mechatronic 
system (mechanical and control system). This 
approach will be developed and reported in later 
papers, with a mission to solve eigenfrequencies and 
mode shapes for active flexible systems. 

5 Conclusion 

In this paper, a brief study of the eigenfrequencies of 
an active system containing a mass-spring-damper 
system and a position feedback PD-controller has 
been conducted. Theory for modal analysis of such a 
system has been derived and presented. The theory has 
been verified by experiments conducted in the 
nonlinear multidisciplinary simulation software 
FEDEM, showing that the derived theory concur with 
the experimental results. 
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Tab. 1 Properties, damping ratio and eigenfrequency for the six different scenarios, based on analytical 
calculations (which are shown in the appendix). 

Scenario ݇ 
[N/m] 

 ܭ
[N/m] 

ܿ 
[Ns/m] 

 ௗܭ
[Ns/m] 

Damping ratio Eigenfrequency 

Undamped       
I) 100 0 0 0 ߞ ൌ 0 ߱ ൌ 1.59 Hz 
II) 0 44 0 0 ߞ ൌ 0 ߱ ൌ 1.06 Hz 
III) 100 44 0 0 ߞ ൌ 0 ߱ ൌ 1.91 Hz 

Damped       
IV) 100 44 7.2 0 ߞ ൌ 0.3 ߱,ௗ ൌ 1.82 Hz 
V) 100 44 0 4.8 ߞ ൌ 0.2 ߱,ௗ ൌ 1.87 Hz 
VI) 100 44 7.2 4.8 ߞ ൌ 0.5 ߱,ௗ ൌ 1.65 Hz 

 
 

Undamped 
 

 
Fig. 8 Results from FEDEM for the three undamped scenarios. 

Damped 
 

 
Fig. 9 Results from FEDEM for the three damped scenarios. 

 
  

ݐ ൌ 0.5490 sec֜  ߱,ௗ ൌ 1.82 Hz 

IV) V) VI) 

ݐ ൌ 0.5345 sec֜ ߱,ௗ ൌ 1.87 Hz 
ݐ ൌ 0.6045 sec֜  ߱,ௗ ൌ 1.65 Hz 

ݐ ൌ 0.6285 sec֜ ߱ ൌ 1.59 Hz 

II) I) III) 

ݐ ൌ 0.9475 sec֜ ߱ ൌ 1.06 Hz 
ݐ ൌ 0.5240 sec֜  ߱ ൌ 1.91 Hz 
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8 Appendix 

Below are shown the calculations for the 
eigenfrequencies in the six different experiment 
scenarios. The formulas used are: Eq. (26) for the 
undamped eigen-frequencies, Eq. (27) for the damped 
eigenfrequencies and Eq. (28) for the damping ratios. 
 
Undamped 

I) ߱ ൌ ට൫ା൯ ൌ ටሺଵାሻଵ ൌ10 rad/sec ൌ 1.59 Hz  
 

II) ߱ ൌ ට൫ା൯ ൌ ටሺାସସሻଵ ൌ6.63 rad/sec ൌ 1.06 Hz 
 

III) ߱ ൌ ට൫ା൯ ൌ ටሺଵାସସሻଵ ൌ12 rad/sec ൌ 1.91 Hz 
 

Damped 
IV) ߞ ൌ ሺାሻଶቆට൫ା൯ቇ ൌ ሺ.ଶାሻଶቀඥሺଵାସସሻଵቁ ൌ  0.3 

֜ ߱,ௗ ൌ ට൫ା൯ · ඥ1 െ ଶߞ ൌටሺଵାସସሻଵ · √1 െ 0.3ଶ ൌ11.44 rad/sec ൌ 1.82 Hz  
 

V) ߞ ൌ ሺାሻଶቆට൫ା൯ቇ ൌ ሺାସ.଼ሻଶቀඥሺଵାସସሻଵቁ ൌ  0.2 
֜ ߱,ௗ ൌ ට൫ା൯ · ඥ1 െ ଶߞ ൌටሺଵାସସሻଵ · √1 െ 0.2ଶ ൌ11.76 rad/sec ൌ 1.87 Hz  
 

VI) ߞ ൌ ሺାሻଶቆට൫ା൯ቇ ൌ ሺ.ଶାସ.଼ሻଶቀඥሺଵାସସሻଵቁ ൌ  0.5 
֜ ߱,ௗ ൌ ට൫ା൯ · ඥ1 െ ଶߞ ൌටሺଵାସସሻଵ · √1 െ 0.5ଶ ൌ10.39 rad/sec ൌ 1.65 Hz  
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