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Abstract

This work represents a computational study of �ow
behaviour in a bubbling �uidized bed. The simula-
tions are performed by using the commercial com-
putational �uid dynamic (CFD) code, Fluent 6.3.
The advantage of using a commercial CFD code is
that corresponding cases for industrial applications
can be simulated by using the same model without
having very deep knowledge about the source code
and the solving algorithms. In CFD simulations of
�uidized beds, it is important to describe the in-
teraction between the particles and the momentum
transfer between the phases. Di¤erent models are
developed for this purpose. The kinetic theory of
granular �ow describes the interaction between par-
ticles and is based on the kinetic gas theory. In a
bubbling �uidized bed there are regions with rather
low fraction of particles and regions with high par-
ticle concentrations. The bed can be described by
two �ow regimes, the viscous regime and the fric-
tional regime. In the viscous regime the kinetic and
the collisional stresses are dominating. The fric-
tional regime occurs at high particle concentrations
and in this regime the �ow behaviour is described
by friction and rubbing between the particles.

The interaction between the particles and the
continuous gas phase are described by a drag model,
and several drag models are developed for this pur-
pose. The models describe the momentum exchange
between the phases. The aim of this work is to
study how the di¤erent drag models in�uence on
the �ow behaviour in a bubbling �uidized bed. Five
di¤erent drag models have been studied. The drag
models are the Gidaspow drag model, a drag model
developed by Syamlal O�Brien, a customized itera-
tive version of the drag model by Syamlal O�Brien,
the modi�ed Hill Koch Ladd drag model and the

newly developed RUC drag model. Two of the drag
models are included in Fluent 6.3, the other models
are implemented by the author. The results from
the simulations with the di¤erent drag models are
compared, and the discrepancies are discussed.

1 Introduction

Fluidized beds are widely used in industrial oper-
ations, and several applications can be found in
chemical, petroleum, pharmaceutical, biochemical
and power generation industries. In a �uidized bed
gas is passing upwards through a bed of particles
supported on a distributor. Fluidized beds are ap-
plied in industry due to their large contact area be-
tween phases, which enhances chemical reactions,
heat transfer and mass transfer. The e¢ ciency of
�uidized beds is highly dependent of �ow behavior
and knowledge about �ow behavior is essentially for
scaling, design and optimization.
Gravity and drag are the most dominating terms

in the momentum equation of the granular phase.
The application of di¤erent drag models signi�-
cantly impacted the �ow of the granular phase by
in�uencing the predicted bed expansion and the
particle concentration in the dense phase regions
of the bed.
This paper will focus on the prediction of drag

force in a �uidized bed. By other researchers several
drag models are developed. In this review some of
this are further investigated and compared.
To describe the properties of the particles or gran-

ular phase, models with origin in the kinetic theory
for granular �ow by Lun et al. [1] is chosen.
This paper is based on the master thesis by the

author [2].
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2 Theory of Modeling Granu-
lar �ow

Modeling of granular �ow is a fairly large subject
and the focus has been on the models included in
the commercial software Fluent 6.3. Fluent uses
the Navier Stokes equations to solve a Finite vol-
ume model. The Navier Stokes equations are con-
servation equations of mass, momentum and energy.
The energy equation has not been studied or used
because compressible �ow or heat transfer is not
included.
The most relevant multiphase model for simula-

tions of bubbling �uidized bed in Fluent 6.3 is the
Eulerian multiphase model. This model will calcu-
late one transport equation for momentum and one
for continuity per phase. The theory for this model
is taken from the reference [3].
The volume fraction for each phase is calculated

with an continuity equation. Equation (1) is a ex-
ample of the gas phase volume fraction equation.
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Index s is the granular phases and g is the gas
or �uid phase. � is the volume fraction, � is the
density, �!u is the phase velocity and _m is the mass
transfer from one phase to another.
Equation (1) is valid for both the gas phase and

the granular phase. Total continuity will be all the
volume fraction equations added. The therm �rg is
the reference density, or the volume averaged den-
sity. The right hand side of equation (1) is used
where mass transfer between phases occur.
The momentum equation for the gas is like equa-

tion (2).
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p is the hydrostatic pressure shared by all the

phases, �!g is the gravitational force, �!F is an exter-
nal body force,

�!
F lift and

�!
F vm is a virtual mass

force. K is the interfacial momentum exchange or
drag.
Equation (2) can be simpli�ed to a simpler ex-

pression when assuming no mass transfer between
the phases, no lift force and no virtual mass force.
The simpli�ed expression will be like equation (3).
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� is the viscosity � is the bulk viscosity I is the
unit tensor.
The assumptions for the granular phase equation

(5) is the same as for the gas phase.
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The momentum equation for gas and granular
phase is quite similar except for the granular pres-
sure ps in the granular phase. The stress-strain ten-
sor � s for the granular phase is like equation (6).
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In the modeling of granular �ow a new concept

of energy is introduced, granular temperature. The
normal or thermal temperature which is most com-
mon way of thinking temperature, is a measurement
of the random �uctuations of the molecules in any
substance. Random �uctuations will be at a micro
level in the molecules. This theory is extended to
the macro scale where the molecules are substituted
with particles. This is called the Kinetic Theory for
Granular Flow (KTGF) and is described by Lun et
al. [1]. The granular temperature is a conserved
scalar solved by a partial di¤erential equation.
The conservation equation for granular tempera-

ture � for granular phase s, can be written as equa-
tion (7) [4].
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In words this equation (7) can be explained as
equation (8).

Transient term + Convective term (8)

= granular phase stress -Flux of �uctuating energy

- Collisional energy dissipation

+ Exchange term with phase g
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Generation of granular temperature is due to
stresses within the granular phase.
� s is the granular phase stress and can be written

as equation (9).

� s = [�ps + �s�sr � �!u s] I � 2�s�sSs (9)

Ss is the deformation rate and is written as equa-
tion (10).

Ss =
1

2

h
r�!u s + (r�!u s)T

i
� 1
3
r � �!u sI (10)

The therm r � qs describe the di¤usive �ux of
�uctuating or granular energy [3]. qs can be written
as equation (11).

qs = k�s
r�s (11)

k�s
is the conductivity of granular temperature.

�s
is the dissipation of granular temperature.

Due to collisions between particles in the granular
phase, the energy in the particles will dissipate. The
algebraic equation for collisional energy dissipation
is derived by Lun et al. [1] and showed in equation
(12).
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When the restitution factor ess goes to 1, the
dissipation of the granular temperature goes to zero.
This means that the particles are perfectly elastic
[1].
The exchange coe¢ cient Ksg is the drag factor of

the particles.
The restitution coe¢ cient ess specify the the coef-

�cient of restitution for collisions between particles.
The coe¢ cient compensate for collisions between

particles to be inelastic.
In Fluent 6.3 other properties models are in-

cluded [3], but it is chosen the models most related
to the kinetic theory for granular �ow by [1]. The
models used are

� Granular viscosity �Syamlal et al. [5]
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� Granular bulk viscosity �Lun et al. [1]
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� Granular conductivity �Syamlal et al. [5]
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� Radial distribution function �Lun et al. [1]
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(18)

Fluent 6.3 has an option for including models for
frictional regime at high particle concentrations [3].
This will e¤ect the viscosity and pressure in the
dense part of the �uidized bed. It is assumed that
this will not e¤ect the simulations and is not in-
cluded [2].

3 Description of the drag
models

The drag models described here are derived in dif-
ferent manners. In the Master Thesis by the author
[2] most of the drag models are derived in detail.

3.1 Syamlal O�Brien

The Syamlal O�Brien drag model, shown in equa-
tion (19), is derived for a single spherical particle in
a �uid, and modi�ed with a relative velocity corre-
lation vr. The relative velocity correlation vr is the
terminal settling velocity of a particle in a system
divided by the terminal settling velocity of a single
sphere [6].

Ksg =
3�g�s�g
4dsv2r

CD j�!us ��!ugj (19)

In this model �g is the volume fraction of �uid or
in this case gas, �s is the particle volume fraction,
�g is the �uid or gas density, ds is the particle diam-
eter and j�!us ��!ugj is the absolute relative interracial
velocity of the particles compared to the �uid. Since
this model is derived for a single spherical particle
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the drag factor CD is also a single particle model
from Dalla Valle [7]. This CD is modi�ed with the
relative velocity correlation and shown in equation
(20).

CD =

240:63 + 4:8q
Re
vr

352 (20)

The relative velocity correlation vr used in this
model is based on a analytical model of experimen-
tal data by Richardson and Zaki [8]. This model is
given by Garside and Al-Dibouni [9] and shown in
equation (21).

vr =
1

2
[A� 0:06Re] (21)

+
1

2

�q
(0:06Re)

2
+ 0:12Re (2B �A) +A2

�
A = �4:14g

B =

�
0:8�1:28g

�2:65g

�g � 0:85
�g > 0:85

The Reynolds number used in this model is the
particle Reynolds number

Re =
�gds j�!us ��!ugj

�g
(22)

The main idea abut this model is the assump-
tion that the Archimedes number is the same in
a single particle and a multiparticle system. The
Archimedes number relates the gravitational forces
to the viscous forces [6].

3.2 Richardson Zaki

This model is similar to the Syamlal O�Brien model
and the assumptions are the same. The di¤erence
is the formulation of the relative velocity correla-
tion vr [2]. In this model the experimental results
from Richardson and Zaki are used directly. Exper-
imental data from Richardson and Zaki provides a
formula to �nd the vr [8]. The formula gives vr im-
plicit and vr has to be found with a algorithm [6].
The relative velocity correlation vr is

vr = �
n�1
g (23)

n is the Richardson Zaki parameter shown in
equation (24).

n =

8>><>>:
4:65 Rem < 0:2

4:4Re�0:03m 0:2 > Rem < 1
4:4Re�0:1m 1 > Rem < 500

2:4 Rem > 500

(24)

The Reynolds number used is a modi�ed
Reynolds number and is shown in equation (25).

Rem =
Re

vr
(25)

Re is the particle Reynolds number described in
equation (22).
The solution algorithm for the relative velocity

correlation vr is

1. Calculate particle Reynolds number.

2. Guess a initial value for the relative velocity
correlation vr e.g. 1.

3. Calculate the modi�ed Reynolds number with
equation (25).

4. Use the calculated Rem to calculate the para-
meter n in equation (24).

5. Calculate right hand side of equation (23).

6. Check if the guessed vr and the calculated vr
in step 5. match. If not use the new vr in
step 3 and calculate vr one more time until
convergence. The error accepted in this work
is 10�5 [2].

3.3 Gidaspow

The Gidaspow drag model is a combination of the
Wen and Yu drag model and the Ergun equation
[10]. The Wen and Yu drag model uses a correlation
from the experimental data of Richardson and Zaki.
This correlation is valid when the internal forces
is negligible which means that the viscous forces
dominate the �ow behavior. The Ergun equation is
derived for a dense bed and relates the drag to the
pressure drop through porous media.
The Wen and Yu drag model can be written as

equation (26).

Ksg =
3�g�g (1� �g)

4dp
CD j�!us ��!ugj��2:65g (26)

The drag factor CD is the drag factor for a spher-
ical particle given by [11].

CD =
24

�g Res

h
1 + 0:15 (�g Res)

0:687
i

(27)

The Ergun equation is shown in equation (28).

Ksg = 150
�g (1� �g)

2

�g (ds�)
2 +1:75

�g (j�!ug ��!usj) (1� �g)
ds�

(28)
The Ergun equation is a combination of the

Kozeny Carman equation and the Burke Plummer
equation [12]. The Kozeny Carman is the �rst part
of the Ergun equation and describe the viscous, low
Reynolds number �ow. The Burke Plummer equa-
tion is the second part of the Ergun equation and
describe the kinetic, high Reynold number �ow [13].
The constant � is a shape factor for the particles.
In this work it has been set to one, meaning com-
pletely spherical particles.
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The combination of the two drag models (26) and
(28) in the Gidaspow drag model is shown in equa-
tion (29) [10].

Ksg =

�
Ksg (Wen Yu) �g > 0:8
Ksg (Ergun) �g � 0:8

(29)

3.4 RUC

The RUC or Representative Unit Cell model is
a drag model derived from pressure drop through
porous media. It was �rst proposed by Du Plessis
and Masliyah [14] and further developed later. The
basic principles of this model is geometrical aver-
aging of a porous media. It has the same form as
the Ergun equation (28), but the two semi empiri-
cal constants (150 and 1:75) is changed with A and
B. This constants are mathematically based.

A =
26:8�3g

(1��g)2=3(1�(1��g)1=3)(1�(1��g)2=3)
2

B =
�2g

(1�(1��g)2=3)
2

(30)

This model is valid for all volume fractions of
particles.

3.5 Hill Koch Ladd

The Hill Koch Ladd drag model di¤ers somewhat
from the other drag models because this is based on
results from computer simulations. This is results
from Lattice Boltzmann simulation. This technique
is rather new because representative results from
this simulations demands high computational e¤ort
[15]. The model used in this work is a modi�ed
version of the Hill Koch Ladd drag model made by
the reference [15].
The modi�ed Hill Koch Ladd model is

Ksg =
3

4

CD�s�g�g j�!ug ��!usj
dp

(31)

The drag factor CD is modeled as

CD = 12
�2g
Rer

F (32)

F is a dimensionless drag factor which correlates
the drag to the Reynolds number and particle con-
centration. In this model the Reynolds number Rer
is based on the radius of the particles rather than
the diameter [15].

Rer =
�g�gdp j�!ug ��!usj

2�g
(33)

The model has some factors w, F0, F1, F2 and F3
shown in equation (34, 35, 36, 37, 38).

w = e(�10(0:4��s)=�s) (34)

F0 =

8>>><>>>:
(1� w)

�
1+3
p
�s=2+(135=64)�s ln(�s)+17:14�s
1+0:681�s�8:48�2s+8:16�3s

�
+w

h
10 �s

(1��s)3

i
; 0:01 < �s < 0:4

10 �s
(1��s)3

; �s � 0:4
(35)

F1 =

( q
2
�s

40 0:01 < �s � 0:1
0:11 + 0:00051e(11:6as) �g > 0:1

(36)

F2 =

8>>><>>>:
(1� w)

�
1+3
p
�s=2+(135=64)�s ln(�s)+17:89�s
1+0:681�s�11:03�2s+15:41�3s

�
+w

h
10 �s

(1��s)3

i
; �s < 0:4

10 �s
(1��s)3

; �s � 0:4
(37)

F3 =

�
0:9351�s + 0:03667 �s < 0:0953

0:0673 + 0:212�s + 0:0232= (1� �s)5 �s � 0:0953
(38)

This factors are used in the drag model to model
the dimensionless drag factor F which is a piecewise
function of Reynolds number and particle concen-
tration. The piecewise functions for F is shown in
equation (39).

F = 1 + 3=8Rer

8<: �s � 0:01 and

Rer �
(F2 � 1)
(3=8� F3)

F = F0 + F1Re
2
r

8<:
�s > 0:01 and

Rer �
F3 +

p
F 23 � 4F1 (F0 � F2)

2F1
F = F2 + F3Rer fOtherwise

(39)

4 Comparison of drag models

In the previous section the drag models was de-
scribed. In the work this paper is based on a set of
initial conditions used, is the same for all the drag
models. Drag or interfacial momentum exchange
for two phases, one gas and one particle phase, is
a function of the volume fraction of gas, gas den-
sity and viscosity, slip velocity and particle diam-
eter. For comparison, all of this are assumed to
be constant except the slip velocity. The gas will
move faster if the volume fraction of particles are
increased. It is assumed that the slip velocity is the
�uidization gas velocity divided by the gas volume
fraction. The values for the properties of the �ow
is given in Tab. (1) [2].
The drag factorKsg from the di¤erent models are

given in Fig. (1) as a function of particle volume
fraction.
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Diameter 154 �m
Gas density 1.225 kg/m3

Gas viscosity 1.7894x10�5 kg/m�s
Slip velocity 0.133/�g m/s

Table 1: Parametrers used as the input parameters
in the drag models

Figure 1: The di¤erent drag predicted by the dif-
ferent drag models [2].

The Hill Koch Ladd has the most characteristic
form. At this initial values it has a local maxi-
mum at the volume fraction of particles around 0:4.
This is due to the transition between low and high
Reynolds �ow at moderate volume fractions. It will
also have a transition from low to high Reynolds
�ow at a lower volume fractions, but this is di¢ -
cult to see at the graph. This behavior is a well
known phenomena when the �ow has a transition
from laminar to turbulent regime.
The Gidaspow model will have a "switch" at a

volume fraction of particles at 0:2 [10]. This is due
to the transition between Wen Yu drag model and
Ergun equation. This is not noticeable at the graph.
The Richardson Zaki drag model has four di¤er-

ent regions, but it will change with the modi�ed
Reynolds number Revr . To get this clearly the initial
conditions of the case has to be changed.
The Syamlal O�Brien model is based on a analyt-

ical expression based on data from Richardson Zaki
and has a rather �at curve for the drag [6].
The RUC drag model is based on asymptote

matching and will have a smooth curve. This model
is continuous for all volume fractions [14].
The RUC and Hill Koch Ladd drag models will

predict the highest drag at the volume fractions of
gas which is most likely to occur in a dense �uidized
bed. The problem with the Hill Koch Ladd model
is that it is just valid for one particle phase [5]. In
literature it is claimed that the particle size distri-
bution will e¤ect the results.
The Syamlal O�Brien and the Richardson Zaki

models will predict the lowest drag for this initial

Diameter 154 �m
Gas density 1.225 kg/m3

Particle density 2485 kg/m3

Gas viscosity 1.7894x10-5 kg/m�s
Inlet velocity 0.133 m/s
Initial bed height 75 cm
Initial particle fraction 0.6
Operating pressure 101325 pa
Gravitational acceleration 9.81 m/s2

Table 2: Parametrers and boundary condisions for
simulation

parameters [2]. Both of this models is based on
experimental data form the reference [8] from 1954,
meaning the measurement equipment is from before
1954. This equipment might not be as accurate as
today equipment.

4.1 Simulation results

Bubbling frequency as a function of radial position
was used to compare the di¤erent models. The bub-
bling frequency was collected at 0:39 cm from the
bottom of the bed. The computational setup is like
explained in previous chapter. Experimental data
from [16] is made on a bubbling �uidized bed with
the dimensions [25�25�200] cm with uniform air
supply in the bottom cross-section. Due to compu-
tational e¤ort the simulation domain is simpli�ed to
2-D. The grid used is [25�200] cm, where every cell
is one by one cm. The coordinates used is Carte-
sian. The basic properties and boundary conditions
is described in Tab. (2).
The results and experimental data from [16] is

shown in Fig. (2).

Figure 2: Results from simulations comparred to
experimental results [2].

Results from the simulations the RUC, Hill Koch
Ladd and Gidaspow give results closes to the ex-
perimental data from [16]. In the work this paper
is based on [2] some other parameters was investi-
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Figure 3: Modi�ed results for the RUC model [2].

gated. This modi�cations was to include more par-
ticle phases regarding the size distribution particles
used in the experiments have. The other thing in-
vestigated was the wall functions. By combining
this results a modi�ed result and the RUC drag
model is achieved and showed in Fig.(3).
The modi�ed results shows simulation results

very close to the experimental results. The reason
it is not as smooth as the experimental data might
be that the experimental data is the mean bubbling
frequency of 30 minutes and the simulations is for
30 seconds [2].

5 Conclusion

Five di¤erent drag models have been described, dis-
cussed and compared to each other. The drag mod-
els are Syamlal and O�Brien drag model, Gidaspow
drag model, Richardson Zaki drag model, RUC drag
model and Hill Koch Ladd drag model. The RUC
and the Hill Koch Ladd models predicted the high-
est drag. Syamlal and O�Brien drag model and Gi-
daspow drag model are default drag models in Flu-
ent 6.3, whereas the three other models have been
implemented by the author.
Simulations with Fluent 6.3 are performed on a

2D �uidized bed with a uniform gas distribution.
The results from the simulations with the di¤er-
ent drag models are compared with respect to bub-
ble frequencies. The computational results are also
compared to experimental results. The RUC model,
the Hill Koch Ladd model and the Gidaspow model
give the best agreement with experimental data.
Modi�cations of the results achieved with the

RUC model are performed. The modi�cations are
based on the in�uence on bubble frequencies due to
including multiple particle phases. The results are
also modi�ed to account for the e¤ect of wall func-
tions on bubble frequencies. The modi�cations are
based on results from simulations with Gidaspow
drag model. The modi�ed simulation results agree

very well with the experimental results.
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