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Abstract

This paper presents an overview of different modelling
and simulation (M & S) methods used in water treat-
ment. Special emphasis is on pulp and paper indus-
try. In chemical water treatment, M & S is success-
fully used in control design. Hybrid models based on a
cascade approach are needed in biological wastewater
treatment to cover different operating conditions. Un-
certainty handling needs to be included, since the mea-
surement material is rather sparse, especially for on fea-
tures of the influent and microbial composition.

1 Introduction
In the pulp and paper industry, a huge amount of water
flows through different processes. For environmental
and economical reasons, the plant recycles the water as
much as possible. Before recycling the water is purified
to a certain degree. The chemical treatment is one of
the purification methods. The dosing control of chem-
icals is very demanding because the quality of water
may fluctuate considerably and the effects of chemicals
on the purification result are nonlinear. Chemicals are
quite often dosed on the basis of the flow rate which
does not always guarantee the adequate purification ef-
ficiency.

Waste water treatment within Finnish pulp and paper
industry is most commonly done in an activated sludge
plant, which is a complex biological process, where
several physical, chemical, and microbiological mecha-
nisms simultaneously affect purification results. Limits
of the emissions are defined by authorities. A lot of
process measurements are available, but measurement
sets do not include sufficient information on special fea-
tures of the influent nor on microbial composition of the
sludge. Populations of microorganisms are highly im-
portant, e.g. sludge bulking cause especially poor treat-
ment efficiency results when biosludge escapes from
secondary clarification.

Process simulators are effective for developing, test-
ing and tuning the controllers. Different control meth-
ods can be tested safely in changing process conditions
without disturbing the process. Furthermore, the chem-

ical dosage can be optimised and the quality of wa-
ter can be analysed in the simulator. However, a reli-
able process model is essential for process simulations.
For activated sludge plants, modelling is even more de-
manding since the condition of the biomass need to
modelled as well.

This paper presents an overview of different modelling
and simulation (M & S) methods used in water treat-
ment, and combines these approaches into a hybrid pro-
cedure.

2 Modelling approach

2.1 Data-driven modelling

Linguistic equation (LE) models consist of two parts:
interactions are handled with linear equations, and non-
linearities are taken into account by membership defi-
nitions [1]. In the LE models, the nonlinear scaling is
performed twice: first scaling from real values to the in-
terval [-2, 2] before applying linguistic equations, and
then scaling from the interval [-2, 2] to real values after
applying linguistic equations (Fig. 1(a)). The linguistic
level of the input variable xj is calculated the inverse
functions of the polynomials [2].

Steady state LE models are represented by

xout = fout

(
−
∑m

j=1,j �=out Aij f−1
j (xj) + Bi

Ai out

)
(1)

where the functions fj and fout are membership defini-
tions of input variables xj and output xout, respectively.

Rather simple input-output LE models, where the old
value of the simulated variable and the current value of
the control variable as inputs and the new value of the
simulated variable as an output, can be used since non-
linearities are taken into account by membership defi-
nitions (Fig. 1(b)). For the default LE model, all the
degrees of the polynomials in parametric models be-
come very low, i.e. all the parametric models become
the same

y(t) + a1y(t − 1) = b1u(t − nk) + e(t). (2)
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(a) A steady state LE model for two inputs and one output.

(b) Dynamic LE model of Δy.

Fig. 1 LE models.

This model is a special case with three variables,
y(t), y(t − 1) and u(t − nk), the interaction matrix
A = [1 a1 − b1] and the bias term B = 0.

The output, the derivative of the variable y, is integrated
with numerical integration methods:

y =
∫ T

0

F (t, y, u)dt + y0, (3)

where T is the time period for integration, and y0 the
initial condition. Usually, several values from the inte-
gration step or the previous steps are used in evaluating
the new value. Step size control adapts the simulation
to changing operating conditions.

2.2 Mechanistic modelling

Mechanistic models have been developed for biological
water treatment. Activated Sludge Models (AS mod-
els) has been in active use in many fronts from indus-
try to the science and many practical projects. The
first model, which was presented in 1987 [3], is most
commonly used. Afterwards, a large set of basis mod-
els has been formed: 1995 ASM2 [4], 1999 ASM2d
and ASM3 [5], and 2001 ASM3-bio-P models. A re-
view on the historical evolution of the activated sludge
process can be found in [6]. Both white-box models
for description of activated sludge processes and com-
bining these models with knowledge-based information
extraction tools have been described in a survey [7].

ASM1 was designed for modelling chemical oxygen
demand (COD) and nitrogen removal in municipal
waste water. ASM1 contains 13 variables, 8 processes
and 19 parameters. The variables include seven COD
components, four nitrogen components, dissolved oxy-
gen, and alkalinity. The processes describe biomass
growth and decay, hydrolysis and ammonification. The
parameter set includes 5 stochiometric and 14 ki-
netic parameters. Bisubstrate hypothesis deals COD in
two parts: readily biodegradable substrate and slowly
biodegradable substrate. When cells die, a part is
assumed to be inactive residual, and the rest slowly
biodegradable. Phosphorus can be modelled with Bio-

P module, which is included in ASM2, ASM2d and
ASM3-bio-P models.

For pulp and paper applications, AS models can be sim-
plified. Lindblom [8] reduced the ASM1 to aerobic
conditions and identified the parameters from a mea-
surement campaign at a pulp and paper mill in Sweden.
As five phosphorus components and three additional ni-
trogen components are included, the model contains 20
variables, 8 reactions and 26 parameters.

AS models are constructed through a step-wise proce-
dure: model purpose definition, model selection, data
collection, data reconciliation, calibration of the model
parameters and model unfalsification. The model pur-
pose, defined at the beginning of the procedure, influ-
ences the model selection, the data collection and the
model calibration. In the model calibration a process
engineering approach, i.e. based on understanding of
the process and the model structure, is needed. [7]

Calibration of the models is challenging because of
a large number of variables and parameters. Black-
box, stochastic grey-box and hybrid models are useful
in waste water applications for prediction of the influ-
ent load, for estimation of biomass activities and efflu-
ent quality parameters. These modelling methodolo-
gies thus complement the process knowledge included
in white-box models with predictions based on data in
areas where the white-box model assumptions are not
valid or where white-box models do not provide accu-
rate predictions.

2.3 Cascade modelling

The high number of parameters can be reduced with ad-
vanced modelling methods: the least angle regression
is used for choosing appropriate coefficients in the re-
sponse surface method, complete rule sets are not usu-
ally needed in fuzzy models, and regularisation meth-
ods reduce the number of the active connections in
ANN models.

Cascade modelling divides the problem into sequential
parts to further alleviate the problem of parameters (Fig.
2). The number of parameters is further reduced with
principal components, e.g. Model A and/or Model B
in Figure 2(a)) could produce principal components for
Model C. Cascade modelling principle and linear mod-
els are essential in various fuzzy and neural method-
ologies as well. In Takagi-Sugeno (TS) fuzzy models
are used for weighting local linear models. Radial ba-
sis networks are linear combinations of the outputs of
the radial basis functions (RBF), e.g. in Figure 2(a)
Model A and Model B could be radial basis functions
and Model C the linear model. Generalised regression
networks have a slightly different linear layer. In the
learning vector quantisation (LVQ), a linear layer de-
tects the classification classes by using subclass output
of the competitive layer.

The output of a model can be used as a input of sev-
eral models (Fig. 2(b)), and the models may also con-
tain interactions or recycle flows (Fig. 2(c)). Feedback
structures are needed in dynamic simulation, e.g. feed-
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(a) Cascade model.

(b) Cascade model.

(c) Interactive models.

Fig. 2 Examples of cascade models.

Fig. 3 A multimodel system with a fuzzy decision mod-
ule.

back connections in Elman networks can be generalised
for interactive models (Fig. 2(c)). Neurofuzzy systems
can be constructed as sequential combinations of neural
and fuzzy parts, i.e. fuzzy set system provides inputs
for a neural network, or neural preprocessing is used
for inputs of a fuzzy set system. Variable grouping is
important in cascade model structures.

The submodels are developed by the case-based mod-
elling approach. The multimodel system has several
submodels and a fuzzy decision system for selecting a
good model for each situation (Fig. 3). Linguistic equa-
tion Takagi-Sugeno type fuzzy models (LETS) belong
to this class but with one limitation: the fuzzy partition
is defined with same variables as the models. As LE
models are nonlinear, also these local models are non-
linear.

2.4 Uncertainty

Universal approximators for fuzzy functions can be
constructed as extension principle extensions of con-
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(a) Extension with a square root function.
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(b) Extension with a second order polynomial.

Fig. 4 Examples of fuzzy extensions.

tinuous real-valued functions which continuously map
fuzzy numbers into fuzzy numbers [9, 10]. The dy-
namic LE models with fuzzy inputs were introduced in
forecasting of batch cooking in a pulp mill [11], and
later adapted to dynamic modelling of a fluidised bed
granulator used in production of pharmaceuticals [12],
and dynamic simulation of a fed-batch enzyme fermen-
tation process [13].

In this approach, LE models are extended to fuzzy in-
puts with this approach if the membership definitions,
i.e. functions f−

j and f+
j and the corresponding in-

verse functions, are replaced by corresponding exten-
sion principle extensions of these functions. Square
root functions (Fig. 4(a)) are used in the linguistifica-
tion part (Fig. 1(b)).

The argument of the function fout in (1) is obtained
by fuzzy arithmetic. Only addition and subtraction are
needed if the interaction coefficients are crisp. Fuzzy
LE models with fuzzy inputs can be constructed by us-
ing multiplication and division as well. Fuzzy extension
of the classical interval analysis [14] suits very well to
these calculations. Finally, the delinguistication block
uses also second order polynomials defined. An exam-
ple is shown in Fig. 4(b).

Fuzzy extension results a nonlinear membership func-
tion for the output even if the membership function of
the input is linear (Fig. 4). The number of α levels
should increase with growing fuzziness of the input.
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Fig. 5 Water quality indicator [16].

Results of the fuzzy interval analysis have always max-
imal uncertainty as it takes the worst case. Negative
associations between the input variables reduce the un-
certainty considerably. In the calculations, this can be
taken into account by using own membership functions
for the upper and lower parts of the value range.

3 Water treatment

Modelling methods have been used first for simulation
of chemical water treatment, and then extended to bio-
logical wastewater treatment.

3.1 Flotation

The chemical treatment is one of the purification meth-
ods. The dosing control of chemicals is very demand-
ing because the quality of water may fluctuate consid-
erably and the effects of chemicals on the purification
result are nonlinear. Chemical water treatment includes
complex nonlinear phenomena such as coagulation and
flocculation processes. Modelling of these complicated
processes is mainly data-based or empirical due to a
lack of comprehensive physical models. Intelligent
methods such as linguistic equations and neural net-
works can be applied for the modelling of nonlinear in-
teractions between input and output variables.

In the flotation unit, process water is treated with a poly-
mer which reacts with extractives forming pitch sludge.
The dynamic LE model is similar to the model shown
in Figure 1(b): the outlet turbidity, xturb(t+Ts), is here
calculated on the properties of incoming water, chemi-
cal dosages and previous calculated turbidity, x turb(t).
The model is developed for steps equal to the sampling
time, Ts. Effective time delays are taken into account
in the models. Experimental design was used to evalu-
ate the effect of chemicals dosage on the treatment re-
sults. Central composite circumscribed was chosen as
the design method. Variables were tested at five differ-
ent levels in order to evaluate the nonlinear effects. Two
different designs were carried out at two capacity lev-
els. In addition, the effect on the amount of dissolved
air was tested. [15]

The quality and amount of incoming water can fluctu-
ate greatly. The basic dynamic flotation model is the
core of the quality indicator. In addition, it contains
two parts; one for selecting the proper submodel and

Fig. 6 Dynamic simulator with the feedforward and the
adaptive feedback controllers [17].

the other for calculation the impurity level. Selection
of the most suitable submodel is based on the error be-
tween measured (on-line) and predicted outlet turbidity
and membership functions of errors. These parameters
define the weighting coefficient for each submodel. If
the error is positive the water quality is more pure than
the average value (Fig. 5). If the error is negative the
water quality is more impure than the average. The av-
erage (normal) water quality was defined using on-line
data for a long period (one month). Cationic demand
seems to correlate strongly with impurity levels of inlet
water. [15]

Process simulators are effective for developing, testing
and tuning the controllers (Fig. 6). Different control
methods can be tested safely in changing process condi-
tions without disturbing the process [18]. The dynamic
simulator contains a dynamic linguistic equation (LE)
model for the flotation basin, controllers for two chem-
icals and a soft sensor for the detection of incoming wa-
ter quality. The faster effecting chemical is controlled
by an adaptive feedback LE controller. More slowly
affecting chemical is controlled by a feedforward con-
troller. [17]

3.2 Activated sludge plant

Biological water treatment depends strongly on
changes in inlet water quality. Changes in biological
state influence on the purification result and subsequent
process phases. The objective of the project is to de-
velop a model based optimisation and control concept
for detecting process conditions and comparing control
actions to improve process operation. On-line measure-
ments and laboratory analysis are combined to build in-
direct measurements and intelligent dynamic models.
Uncertainty handling is an essential part of the models.
The concept is tested in connection to industrial purifi-
cation processes.

Influent quality depends on suspended solids (SS),
chemical oxygen demand (COD), biological oxygen
demand (BOD) and concentrations of nitrogen and
phosphorus. In pulp and paper industry, additional ni-
trogen and/or phosphorus dosing is needed to keep the
biomass in good condition. Changes in biomass pop-
ulation may cause sludge bulking which is seen as de-
terioration of sludge setling properties, described with
sludge volume index (SVI) or diluted sludge volume in-
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Fig. 8 Work packages of project Control and optimisation in biological water treatment (BioConOpt).

Fig. 7 Actived sludge plant.

dex (DSVI). For example, if there is lack of oxygen or
nutrients compared to biomass population, filamentous
sludge leads into poor settling properties.

Changes in activated sludge process are slow, especially
recovering from the bulking state to normal operation
takes time. There significant seasonal effects, e.g. tem-
perature is typically some degrees lower in winter time.
On the other hand, cooling problems may case temper-
ature rise in summer time. In addition pH, dissolved
oxygen profile have obvious effects to the biomass pop-
ulation. Considerable changes of influent quality can be
seen in conductivity.

The control variables such as sludge age, COD/nutrient
rate, sludge loading, and recycle ratio can be derived
from the measurements. The treatment efficiency is as-
sessed by reduction of total nitrogen, total phosphorus,
and total COD. Effective time delays should be taken
into account, and an additional challenge is that these
time delays are varying. Naturally, the delays depend
on the flow rates, but also the changes of kinetics have
their effects.

Many variables are normally measured in a plant, but
some of them are strongly cross-correlated. Data-
based analysis have been used for variable selection
[19, 20, 21]. Clustering data for detection of operating
conditions has used in [22, 23].

Hybrid models are needed to cover different operating
conditions (Fig. 8). Mechanistic models provide ma-
terial understanding the phenomena but the number of
variables and parameters is too high for parameter iden-
tification. Data-driven models can be developed only
for specific operating conditions. Dynamic models do
not provide any information about important variables
if the training material contains several operating con-
ditions. Therefore, detection of these conditions based
on clustering has been the main topic in the beginning
of the BioConOpt project. These approaches provide
basis for indirect measurements of the biomass proper-
ties. The multimodel system shown in Fig. 3 should
be based on the biomass population. Then the individ-
ual dynamic models can be developed by using similar
structures as in flotation models. Uncertainty handling
needs to be included, since the measurement material is
rather sparse, especially for on features of the influent
and microbial composition.

4 Conclusions

Modelling and simulation approaches used in chemical
water treatment can be extended to biological wastewa-
ter treatment. Mechanistic modelling provides under-
standing of the phenomena. Hybrid models based on
a cascade approach are needed to cover different oper-
ating conditions. Uncertainty handling needs to be in-
cluded, since the measurement material is rather sparse,
especially for on features of the influent and microbial
composition.
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