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Abstract

A method for outlier detection based on the residual
of system identification is presented in [1]. An alter-
native approach to this method is derived in this pa-
per; outliers may cause large innovation processes (ab-
solute values). Hence, such outliers may be detected
by searching for samples having large innovation pro-
cesses. In [2] it is proved that the innovation pro-
cess can be identified directly from system input and
system output data, without relying on models. This
method is therefore well suited for outlier detection. In
[3] it is shown that the innovation process identified
by the method of [2] is identical to the residual of an
ARX identification. Hence, the method to be derived
in this paper can mathematically be proved to be a spe-
cial case of the method presented in [1]: If an ARX
algorithm is chosen for the system identification step
in the method of [1], then the method of [1] and the
method to be presented in this paper become mathe-
matically identical. The latter method is tested on ex-
perimental data from the copper refining process of Xs-
trata Nikkelverk, Kristiansand, Norway. The MATLAB
command delayest is used to estimate time delays
between system inputs and system outputs in a dataset.
A simulation study of delayest shows that the com-
mand is sensitive to: (i) The specified model order.
(ii) Stochastic elements in the dataset. (iii) Whether
all time delays are estimated during one execution of
delayest, or whether only one time delay is esti-
mated for each execution. delayest is also tested
on experimental data from Xstrata Nikkelverk. These
tests confirm that delayest is sensitive to the factors
listed above.

Keywords
Data preprocessing; Outlier detection; Time delay esti-
mation; Time delay identification.

1 Introduction
Modeling of dynamic systems is a most important part
of today’s science and engineering. Dynamic mod-
els serve many purposes. For example: (i) Training
of process operators, pilots, and astronauts. (ii) Ex-
ploring systems in a different time scale than physical
time. (iii) Testing systems by simulations before they
are manufactured. For example ships, airplanes, mis-
siles, and sub-sea oil installations. (iv) Model-based
control, such as LQG control, model-based predictive
control (MPC), linear and nonlinear decouplers, Smith
predictors, etc.

In those cases where the systems to be modeled already
exist and it is possible to log data from the systems,
it may be desirable to include such experimental data
in the modeling work. For mechanistic (first princi-
ple) modeling, experimental data may be used for pa-
rameter estimation. For empirical modeling (black-box
modeling), including system identification, the models
are built directly from experimental data. Experimental
data is also essential with respect to model validation.

Experimental data logged from real-life systems, such
as process industry, often requires preprocessing before
they can be used for model building and model valida-
tion. This paper considers two sorts of data preprocess-
ing that are frequently required on experimental data:

1. Outlier detection: In [1], a method for outlier de-
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tection is presented. This method is based on the
residuals of system identification: Samples having
particularly large residuals (one-step-ahead pre-
diction errors) should be inspected further as they
may be associated with outliers. An alternative ap-
proach to this method for outlier detection will be
derived in this paper.

2. Time delay estimation: The MATLAB command
delayest is included in the MATLAB System
Identification Toolbox. This command is used to
estimate time delays between system inputs and
system outputs in a dataset. A simulation study of
delayest is presented in this paper. A sugges-
tion for improvement that will make delayest
less sensitive to the specified model order is also
presented.

Both with respect to outlier detection and with respect
to time delay estimation, real-life examples from the
copper refining process at Xstrata Nikkelverk, Kris-
tiansand, Norway, will be presented. Three process in-
puts, u1, u2, and u3, and one process output, y, are con-
sidered in the examples. u1 is the mass flow from the
roasting furnace to the copper leaching process. u2 is
a recirculation flow from after the electro winning back
to the copper leaching process. u3 is the flow of sul-
phuric acid (H2SO4) to the copper leaching process. y
is the concentration of sulphuric acid before the electro
winning.

2 Notation and Definitions
The inputs to a system are collected in the input col-
umn vector, u ∈ Rr×1, where r is the number of in-
puts. The outputs from a system are collected in the
output column vector, y ∈ Rm×1, where m is the num-
ber of outputs. A sub-script to these vectors refers to
the sampling number. A super-script refers to the input
or output number. For example u2

k refers to input no. 2
at sample no. k.

The symbol τ refers to true time delay (number of sam-
ples). τ is in general unknown and is subject to estima-
tion. A super-script to τ , for example τ2, refers to the
time delay from input u2 to the output y. τ̂ refers to
time delay estimates. τ̄ refers to a time delay given as
argument to a system identification algorithm. τ̄ may
or may not be equal to the actual time delay, τ .

Def. 1 (Innovation Process). The system output, yk,
may be decomposed into two components: (i) The com-
ponent of yk that can be predicted from previous inputs,
u−∞, . . . , uk−1, and previous outputs, y−∞, . . . , yk−1,
assuming no model errors. This predictable component
of yk is referred to as ȳk. (ii) The complement of ȳk,
i.e. the component of yk that can not be predicted from
previous inputs and previous outputs. This is referred
to as the innovation process, εk. Hence, εk = yk − ȳk.

For bi-proper systems, i.e. systems having direct feed-
through from the input, uk, to the output, yk, the current
input, uk, may also be included in the prediction of yk.

For simplicity, only strictly proper systems, i.e. sys-
tems without direct feed-through from uk to yk, will be
considered in this paper.

The symbol ε is used for the true innovation process,
which in general is unknown. The symbol ε is used for
the identified innovation process. The identified inno-
vation process is in general not exactly identical to the
true innovation process.

Def. 2 (Orthogonal Projection). The orthogonal pro-
jection of G onto H , G/H , is defined as in Eq. (1) [2].

G/H
def= GHT (HHT )†H (1)

The super-script † refers to the Moore-Penrose pseudo-
inverse.

Def. 3 (Complement of Orthogonal Projection). The
complement of the orthogonal projection of G onto H ,
GH⊥, is defined by Eq. (2) [2].

GH⊥
def= G−G/H def= G−GHT (HHT )†H (2)

Def. 4 (ARMAX Model Form). Eq. (3) defines the gen-
eral form of ARMAX models [1].

A(q)yk = B(q)uk + C(q)εk (3)

In Eq. (3), q is the time-shift operator of the Z-
transform, i.e. q−1 yk = yk−1. The symbol q is com-
monly used within the subject of system identification.
The symbol z is used in many other contexts. A(q),
B(q), and C(q) are polynomials. nA, nB , and nC are
the number of coefficients in the polynomials that in
general are different from 1. The A(q) polynomial and
theC(q) polynomial are monic polynomials, i.e. the co-
efficient of their highest order term is 1.

Def. 5 (ARX Model Form). Eq. (4) defines the general
form of ARX models [1].

A(q)yk = B(q)uk + εk (4)

A(q) is a monic polynomial.

3 Outlier Detection
Outliers may be data that for one sample, or for a few
samples, go to unlikely values, and then back to normal
values. Such outliers can usually be seen by plotting
the dataset. However, as shown in [1], outliers may also
be data that are not unlikely values, but rather average
values. These data can for example be outliers because
the derivative of the data changes unlikely fast, i.e. the
second derivative has unlikely large absolute value.

In [1, Example 14.1] the following method for outlier
detection is suggested: (i) Identify an empirical model
based on the dataset using a system identification al-
gorithm. In [1, Example 14.1], a 3rd order ARMAX
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model is used. (ii) Run a one-step-ahead prediction
simulation using the empirical model and the dataset.
(iii) Plot the one-step-ahead prediction errors from the
simulation to detect outliers: Large prediction errors
(absolute values) may be caused by outliers.

3.1 An Alternative Approach to a Method for Out-
lier Detection Presented in [1]

This subsection derives an alternative approach to the
method for outlier detection presented in [1]. This al-
ternative approach is based on sub-space system identi-
fication, in particular the work presented in [2].

Most real-life systems do have some innovation pro-
cess, ε. The innovation process is typically caused by
unmeasured process disturbances and / or measurement
noise. Assume that there is a measurement error in one
of the variables used to compute ȳk or in yk that is sig-
nificantly larger than the normal measurement noise.
This is likely to cause a mismatch between yk and ȳk
that is also significantly larger than normal. According
to Def. 1: Assuming that the model used to compute

ȳk has no modeling error, then the mismatch between
yk and ȳk is the innovation process, εk. Hence, mea-
surement errors may be detected by looking for samples
having unusually large innovation processes (absolute
values).

In [2] it is proved that for linear time-invariant (LTI)
systems, the innovation process, εk, can be identified
directly from previous inputs, u−∞, . . . , uk−1, and pre-
vious outputs, y−∞, . . . , yk−1, without relying on mod-
els. As infinite number of preceding samples can not be
used in any practical problems, only the J preceding
samples are used, where J is a user-specified param-
eter. The identified innovation process, εk, is the com-
plement of the orthogonal projection of current outputs,
yk, onto inputs and outputs from the J preceding sam-
ples, uk−J , . . . , uk−1 and yk−J , . . . , yk−1 [2]. This can
mathematically be written as Eq. (5). The matrices of
Eq. (5) are as presented in Eq. (6) to Eq. (8). K is the
number of columns of the matrices of Eq. (6) to Eq. (8)
[2, 4, 3]. (Eq. (5) to Eq. (8) are obtained by choosing
L = 1 and g = 0 in the derivation of [2], as shown in
[5, 4, 3].)

εJ|1 = YJ|1

[
U0|J
Y0|J

]⊥
(5)

YJ|1 = [ yJ yJ+1 . . . yJ+K−1 ] ∈ Rm×K (6)

εJ|1 = [ εJ εJ+1 . . . εJ+K−1 ] ∈ Rm×K (7)

[
U0|J
Y0|J

]
=



u0 u1 . . . uK−1

u1 u2 . . . uK

...
...

. . .
...

uJ−1 uJ . . . uK+J−2

y0 y1 . . . yK−1

y1 y2 . . . yK

...
...

. . .
...

yJ−1 yJ . . . yK+J−2



∈ R(r+m)J×K (8)

The method for identifying the innovation process
given by Eq. (5) to Eq. (8) is equivalent to the first step
of the DSR E subspace system identification algorithm
[5, 4]. The DSR E algorithm is presented in [5, 4].
DSR E should not be confused with the DSR algorithm,
although DSR and DSR E are closely related.

The identified innovation process, εk, is plotted for all
timesteps, k (except for the first J timesteps, which are
used for initialization purposes). The upper subplot of
Fig. 1 shows an ε plot. Timesteps having particularly
large innovation processes (absolute values) can easily
be identified as peaks in the ε plot. These timesteps
and the surrounding timesteps are candidates for being
outliers and should be subject to further inspection.

In [3] it is proved that the innovation process identified
by the method of [2], i.e. Eq. (5) to Eq. (8), is mathe-
matically identical to the residual from identification of
a strictly proper ARX model where nA = nB = J .
This residual can also be expressed as the one-step-
ahead prediction error when simulating the identified
ARX model on its own training dataset. Hence, the
method for outlier detection based on the identified in-
novation process, as presented above, is a special case
of the method explained in [1, Example 14.1]: If choos-
ing a strictly proper ARX model where nA = nB = J
in the system identification step of [1, Example 14.1],
then the two methods become mathematically identical.

With respect to the method of [1] and the method de-
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Fig. 1 The innovation process identified by Eq. (5) to
Eq. (8) before (upper subplot) and after (lower subplot)
outliers have been removed.

rived above, it is most important to be aware that these
methods identify samples having large identified inno-
vation processes / prediction errors. One should not
conclude that samples having large identified innova-
tion processes in general are equivalent to samples as-
sociated with outliers: (i) Large innovation processes
may be caused by other factors than outliers, for exam-
ple large, sudden process disturbances. In other words;
large innovation process at a sample indicates that this
sample and the surrounding samples should be objects
to further inspection. Whether it actually is an outlier,
and if so, how to handle it, is a decision to be taken by
the human data analyzer (or by other methods). (ii) The
identified innovation process may be significantly dif-
ferent from the true innovation process. For example,
the method of [1] and the method derived above assume
linear time-invariant (LTI) systems (unless a nonlinear
system identification method is used in the method of
[1]). Strongly nonlinear systems may cause large de-
viations between the true innovation process and the
identified innovation process. (iii) There may also be
outliers that do not cause particularly large innovation
process and are therefore not detected by these meth-
ods.

3.2 Outlier Detection on Industrial Data

This subsection presents a real-life industrial example
of the method for outlier detection presented in Sub-
sec. 3.1. The example is based on experimental data
from the copper refining process at Xstrata Nikkelverk,
Kristiansand, Norway. This process is briefly explained
in Sec. 1.

The innovation process identified in a dataset from Xs-
trata Nikkelverk is shown in the upper subplot of Fig. 1.
The innovation process was identified using Eq. (5) to
Eq. (8). The three largest peaks of the ε plot, indicated
by arrows, will be considered in this example. The ex-
act sample numbers of these peaks must be identified.
The zoom options of MATLAB figures may be used for
this purpose.

Fig. 2 The process output, y, zoomed in at the samples
marked by arrows in Fig. 1.

The subplots of Fig. 2 show the output, y, zoomed in
at the samples indicated by arrows in Fig. 1. The solid
lines in Fig. 2 show y before outliers were removed.
The samples indicated by arrows in Fig. 1 are all at
samples where the derivative of y changes very fast, i.e.
the second derivative has high absolute value. These
data were classified as outliers and were removed by
linear interpolations across them. These interpolations
are shown by dotted lines in Fig. 2. After these outliers
were removed, the innovation process was re-identified
using Eq. (5) to Eq. (8). The new ε plot is shown in
the lower subplot of Fig. 1. The three peaks marked
by arrows in the upper subplot are no longer present.
Hence, it is reasonable to conclude that these peaks
were caused by the outliers shown in Fig. 2.

Consider criterion V defined by Eq. (9).

V
def=

1
N

N∑
k=1

εk
2 (9)

In Eq. (9), N is the number of samples in the dataset
(minus the number of samples used for initialization
purposes and to compensate for time delays). Criterion
V is a commonly used model fit criterion within the
subject of system identification as ε is identical to the
one-step-ahead prediction error. The value of V was
reduced by more than 80% when removing the outliers.
Hence, removing the outliers resulted in significantly
better model fit.

4 Time Delay Estimation
When building models using system identification, time
delays from system inputs to system outputs may cause
problems if not handled properly. If the time delays are
not compensated for, a large number of model states
may be necessary to model the dynamics of the time
delays. Too many model states are unfortunate because
the identified models may be over-fitted. Over-fitted
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models may perform very well on their respective train-
ing datasets, but such models will in general perform
poorly on independent validation datasets. If the time
delays are known, they may be compensated for by
shifting the input dataseries with respect to the output
dataseries.

This section considers the MATLAB command
delayest, which is included in the MATLAB Sys-
tem Identification Toolbox [6]. This command serves
the purpose of estimating time delays from the system
inputs, u, to a system output, y, based on a dataset. The
command can only handle single output systems, i.e.
y ∈ R1×1. Quoting [6]:

The delayest command estimates the time delay in
a dynamic system by estimating a low-order, discrete-
time ARX model with a range of delays, and then choos-
ing the delay that corresponding to the best fit.

Subsec. 4.1 presents a simulation study of delayest.
This subsection also includes a suggestion for improve-
ment of delayest. In Subsec. 4.2, delayest
is tested on experimental data from the copper refin-
ing process at Xstrata Nikkelverk; the estimates of
delayest are compared to the estimates of [7], which
are based on process knowledge.

The following properties of the time delay estimates
made by delayest will be considered: (i) The ac-
curacy of the estimates, i.e. how close the estimates are
to the actual time delays (or to the estimates of [7]).
(ii) Whether the time delay estimates are sensitive to
the model order specified to delayest. (iii) Whether
the time delays estimates are sensitive to stochastic el-
ements in the dataset. (iv) Whether the time delay es-
timates are sensitive to whether the system is consid-
ered as one 3 × 1 system or as three 1 × 1 systems.
In the 3 × 1 case, all three inputs, u1, u2 and u3, are
provided to delayest in one single execution of the
command. delayest then estimates τ̂1, τ̂2 and τ̂3 by
making ARX models based on u1, u2 and u3, and of
course y. In the 1 × 1 case, only one input is provided
to delayest at each execution. Hence, three execu-
tions are needed to estimate the three time delays. The
1 × 1 case is to be preferred with respect to computa-
tional efficiency [3].

4.1 Simulation Study of Time Delay Estimation

In the experiments presented in this subsection, two
models are used: (i) A single input, single output
(SISO) ARMAX model on the form of Eq. (10). This
model is referred to as model no. 1. (ii) A multiple in-
put, single output (MISO) ARMAX model on the form
of Eq. (11). This model is referred to as model no. 2.

A(q)yk = B1(q)u1
k + C(q)εk (10)

A(q)yk = B1(q)u1
k +B2(q)u2

k (11)

+B3(q)u3
k + C(q)εk

For the polynomials of Eq. (10) and Eq. (11), n =
nA = nB1 = nB2 = nB3 = nC = 6. Both mod-
els are asymptotically stable.

The experiment to be presented in the following aims to
explore the accuracy of delayest and which factors
the command are sensitive to. delayest is tested on
two datasets generated by simulations based on model
no. 2. The input data used in the simulations, u1, u2,
and u3, are based on experimental data from Xstrata
Nikkelverk. One dataset was generated as no innova-
tion process, ε, was applied to the simulation. This
dataset is referred to as the deterministic case. The
other dataset was generated as a white noise sequence
was applied for simulating the innovation process, ε.
This dataset is referred to as the stochastic case. Except
for the innovation process, the datasets were generated
under identical condition. After the simulations, the in-
put dataseries, u1, u2 and u3, are shifted with respect to
the output, y, so that τ1 = 20, τ2 = 30, and τ3 = 50.
The deterministic and the stochastic datasets are then
provided to delayest for estimation of the time de-
lays, τ1, τ2, and τ3.

delayest requires the user to specify intervals of
possible values for τ̂1, τ̂2, and τ̂3. delayest will
only consider these intervals when estimating time de-
lays. In the simulation study presented here, these in-
tervals are set to ±10 the true time delays: τ̂1 is spec-
ified to be in the interval [10, 30], τ̂2 is specified to be
in the interval [20, 40], and τ̂3 is specified to be in the
interval [40, 60]. delayest also requires the user to
specify n̄A, n̄B1 , n̄B2 , and n̄B3 of the ARX models to
be identified during execution of the command. The bar
symbol is here used to avoid confusion with the corre-
sponding values of the ARMAX models, i.e. Eq. (10)
and Eq. (11). In this simulation study, these values are
always chosen so that n̄A = n̄B1 = n̄B2 = n̄B3 . This
value will be referred to as n̄.

Fig. 3 to Fig. 6 show the estimates of delayest, τ̂1,
τ̂2, and τ̂3, plotted as functions of n̄. Fig. 3 shows the
deterministic 3 × 1 case, Fig. 4 shows the stochastic
3 × 1 case, Fig. 5 shows the deterministic 1 × 1 case,
and Fig. 6 shows the stochastic 1 × 1 case. These sim-
ulations show that the estimates of delayest are sen-
sitive to:

1. The value of n̄. If delayest was not sensitive to
the value of n̄, then the curves in Fig. 3 to Fig. 6
would have been horizontal lines.

2. Stochastic elements in the dataset. If delayest
was not sensitive to stochastic elements, then the
curves of Fig. 3 and Fig. 4 would have been iden-
tical. Likewise for Fig. 5 and Fig. 6.

3. Whether the 3× 1 approach or the 1× 1 approach
is used. If delayest was not sensitive to this,
the curves of Fig. 3 and Fig. 5 would have been
identical. Likewise for Fig. 4 and Fig. 6.

In the simulations presented in Fig. 3 to Fig. 6,
delayest estimates τ1, τ2, and τ3 exactly correct
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Fig. 3 Time delay estimates, τ̂1, τ̂2, and τ̂3, plotted as
functions of n̄ for the deterministic 3× 1 case.

Fig. 4 Time delay estimates, τ̂1, τ̂2, and τ̂3, plotted as
functions of n̄ for the stochastic 3× 1 case.

Fig. 5 Time delay estimates, τ̂1, τ̂2, and τ̂3, plotted as
functions of n̄ for the deterministic 1× 1 case.

Fig. 6 Time delay estimates, τ̂1, τ̂2, and τ̂3, plotted as
functions of n̄ for the stochastic 1× 1 case.

SIMS 49

www.scansims.org Proceedings of SIMS 2008
Oslo, Norway, October 7-8, 2008

91



only when the following three criteria are met: (i) The
correct polynomial orders are specified, i.e. n̄ = 6.
(ii) Stochastic elements are not present in the dataset,
i.e. ε = 0. (iii) The 3 × 1 approach is used. In any
other cases, delayest fails to make exactly correct
estimates for all three time delays.

In particular the deterministic 3×1 case, i.e. Fig. 3, and
to some extend also the other figures show that there is a
systematic error present: The time delay estimates tend
to decrease as n̄ increases. In the deterministic 3 × 1
case, τ̂2 and τ̂3 decrease as n̄ increase from n̄ = 6 until
τ̂2 and τ̂3 saturate at the lower ends of their specified
intervals, i.e. at n̄ = 16. Over the interval n̄ ∈ [6, 16],
n̄ has increased by 10 and τ̂2 and τ̂3 have decreased by
10.

In the following, a suggestion for improvement of
delayest is derived. This improvement makes
delayest less sensitive for the value of n̄. The im-
provement works only for deterministic, linear time-
invariant (LTI) systems. The derivation presented here
is based on a single input, single output (SISO) system.
In [3] it is shown that this improvement can easily be
extended to multiple input, single output (MISO) sys-
tems.

Based on model no. 1, a deterministic dataset was gen-
erated using an input sequence, u1, from a dataset of
Xstrata Nikkelverk. No innovation process, ε, was ap-
plied to the simulation. The input dataserie, u1, was
shifted with respect to the output dataserie, y, so that
τ1 = 20.

Please note the difference between the symbols ε and
ε. ε is the innovation process generated by a random
generator. In this derivation ε = 0. ε is the one-step-
ahead prediction error. In the following, ε refers to the
one-step-ahead prediction error as a model is simulated
on its own training dataset.

For a given dataset and a given system identification al-
gorithm, in this case ARX, the one-step-ahead predic-
tion error, ε, and inherently the model fit criterion, V , as
defined in Eq. (9), are functions of the parameters speci-
fied to the ARX system identification algorithm: (i) The
specified time delay, τ̄1, and (ii) the specified values of
n̄A and n̄B1 . In this derivation, n̄A and n̄B1 are always
chosen so that n̄A = n̄B1 . This value will be referred
to as n̄. Hence, ε = ε (τ̄1, n̄) and V = V (τ̄1, n̄).

Fig. 7 shows V plotted as function of τ̄1 for n̄ = 5, for
n̄ = 6, and for n̄ = 12. Please note that: (i) For n̄ = 5,
V does not reach zero for any value of τ̄1. (ii) For n̄ =
6, i.e. the same value as for model no. 1: V does reach
zero (< 10−28) for τ̄1 = τ1 = 20, i.e. for the correct
time delay, but not for any τ̄1 6= τ1. (iii) For n̄ = 12,
V is zero (< 10−28) for τ̄1 ∈ [14, 20]. Values below
10−28 are considered as zero as it is assumed that these
values differ from zero only due to numerical reasons.

Further simulations were run, which are not presented
in this paper. These simulations indicate that the ob-
servations presented in Fig. 7 can be generalized to the
following two statements; Statement (i): For n̄ < n, V

Fig. 7 V plotted as function of τ̄1 for n̄ = 5, for n̄ = 6,
and for n̄ = 12. The Y axis is logarithmic.

does not reach 0 for any τ̄1. Statement (ii): For n̄ ≥ n,
V = 0 for any τ̄1 ∈ [τ1 − (n̄− n), τ1].

Statement (i) has a trivial explanation: As the polyno-
mials of the ARX model have lower order than the poly-
nomials of model no. 1, which was used to generate the
dataset, the ARX model does not have enough poles
nor enough zeros to perfectly explain the dynamics of
model no. 1.

Statement (ii) can be explained by considering the ARX
regression matrix. For simplicity, a deterministic SISO
system were n = nA = nB = 2 is used for illustration.
The time delay of the system is τ = 20 samples. Hence,
the system is on the form of Eq. (12).

yk = −a1yk−1 − a2yk−2 + b1uk−20 + b2uk−21 (12)

Now assume that a dataset is generated by applying an
input signal, u, to the system of Eq. (12). Further as-
sume that u is not a periodic signal. The generated
dataset is now to be used for system identification of the
system presented in Eq. (12). If the value of n is known,
but the time delay, τ , is unknown, the ARX regression
problem is on the form of Eq. (13). For simplicity, only
one row of the regression matrix is shown.

yk = (13)

[ −yk−1 −yk−2 uk−τ̄ uk−τ̄−1 ]


ā1

ā2

b̄1

b̄2


In Eq. (13), τ̄ is a time delay specified to the ARX sys-
tem identification algorithm. For this ARX regression
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problem to have no residual, the columns uk−20 and
uk−21 must be included in the regression matrix. This
is true if, and only if, τ̄ is chosen identical to the true
time delay, i.e. 20 samples. For any τ̄ 6= 20, there will
be residuals. Hence, the true time delay can be identi-
fied by considering the residual for various values of τ̄ .

This is identical to the curve representing n̄ = 6 shown
in Fig. 7.

If also the value of n is unknown, an arbitrary n̄ ≥ n is
chosen. Assume n̄ = 4 is chosen. The ARX regression
problem is now on the form of Eq. (14).

yk = [ −yk−1 −yk−2 −yk−3 −yk−4 uk−τ̄ uk−τ̄−1 uk−τ̄−2 uk−τ̄−3 ]



ā1

ā2

ā3

ā4

b̄1

b̄2

b̄3

b̄4


(14)

Also in the case of Eq. (14), the columns uk−20 and
uk−21 must be included in the regression matrix to
avoid residuals. However, in this case, this is achieved
for three different values of τ̄ :

τ̄ = 20 ⇒ [uk−τ̄ , uk−τ̄−1] = [uk−20, uk−21]

τ̄ = 19 ⇒ [uk−τ̄−1, uk−τ̄−2] = [uk−20, uk−21]

τ̄ = 18 ⇒ [uk−τ̄−2, uk−τ̄−3] = [uk−20, uk−21]

This is identical to the results presented in Fig. 7: The
residual is zero for τ̄ ∈ [τ − (n̄− n), τ ]. In the case of
Eq. (14) the residual is zero for τ̄ ∈ [20− (4− 2), 20],
i.e. τ̄ ∈ [18, 20]. The highest value of τ̄ that gives no
residual is the correct time delay.

Statement (ii) can be used to identify the value of τ1:
As V = 0 for τ̄1 ∈ [τ1 − (n̄ − n), τ1], τ1 is given by
the highest values of τ̄1 giving V = 0. This value can
be read from Fig. 7: For both n̄ = 6 and for n̄ = 12,
the highest value of τ̄ giving V = 0 is τ̄ = 20, which
is the correct time delay. Statement (ii) can not be used
for n̄ = 5 < n because the statement assumes n̄ ≥ n.

Statement (ii) can also be used to identify the value
of n: Define τ̄1

min(n̄) as the lowest τ̄1 giving V =
0. According to statement (ii), τ̄1

min(n̄) is given by
τ̄1
min(n̄) = τ1− (n̄−n). τ̄1

min(n̄) can be read from the
plot shown in Fig. 7. Hence, as τ1, τ̄1

min(n̄), and n̄ are
known, n can be calculated by n = τ̄1

min(n̄)− τ1 + n̄.

For the curve representing n̄ = 6 in Fig. 7: τ1 = 20
(see two paragraphs above), τ̄1

min(n̄) = 20 (read from
Fig. 7), and n̄ = 6 (specified). Hence, n = τ̄1

min(n̄) −
τ1 + n̄ = 20− 20 + 6 = 6, which is the correct value.

For the curve representing n̄ = 12 in Fig. 7: τ1 = 20
(see three paragraphs above), τ̄1

min(n̄) = 14 (read from
Fig. 7), and n̄ = 12 (specified). Hence, n = τ̄1

min(n̄)−
τ1 + n̄ = 14− 20 + 12 = 6, which is the correct value.

In the derivation presented above, it has been assumed

that nA = nB . The method presented above actually
identifies nB , i.e. if the assumption nA = nB is vio-
lated, the identified value of n is equal to nB and dif-
ferent from nA. This can be seen from the explanation
given by Eq. (12) to Eq. (14): The value of n̄A does not
influence for which value of τ̄ there is no residual. Of
course n̄A must be chosen so that n̄A ≥ nA, otherwise
there will always be residuals regardless of the value of
τ̄ .

4.2 Time Delay Estimation on Industrial Data

The delayest command has been tested on a dataset
from the copper refining process at Xstrata Nikkelverk.
This process is briefly explained in Sec. 1. As the actual
system order is unknown, delayest has been tested
for four different values of n̄: n̄ = 3, n̄ = 5, n̄ = 10,
and n̄ = 20, where n̄ = n̄A = n̄B1 = n̄B2 = n̄B3 . For
each of the n̄ values, both the 3× 1 case and the 1× 1
case were tested. The time delays, τ1, τ2, and τ3, were
all specified to be within the interval [15, 110].

In [7] it is provided rough time delay estimates based
on process knowledge. In Fig. 8, the estimates of
delayest are compared to the estimates of [7].
The figure shows that: (i) There are large variations
within the estimates of delayest. This confirms that
delayest is sensitive to the specified values of n̄ and
to whether the 3× 1 approach or the 1× 1 approach is
used. (ii) There are in general large deviations between
the estimates of [7] and the estimates of delayest.

5 Conclusions
Outliers in a dataset may cause innovation processes,
which are significantly larger (absolute value) than
usual. Hence, searching for samples having large inno-
vation processes may be used as a method for outlier de-
tection. In [2] it is proved that for linear time-invariant
(LTI) systems the innovation process can be identified
directly from input and output data, without relying on
models. This method is therefore well suited for outlier
detection. In [3] it is shown that the innovation process
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Fig. 8 Time delay estimates of delayest and of [7].

identified by the method of [2] is mathematically iden-
tical to the residual of an ARX identification of which
nA = nB = J . It then follows that using the method
of [2] for outlier detection is a special case of a method
for outlier detection presented in [1, Example 14.1].

The method for outlier detection based on [2] has been
tested on industrial data from Xstrata Nikkelverk, Kris-
tiansand, Norway. The method detected three outliers
that would not have been detected by plotting the raw
data. The detected data are outliers because the deriva-
tive of the output changes unlikely fast, i.e. the second
derivative of the output has unlikely large absolute val-
ues.

The MATLAB command delayest is used to esti-
mate time delays between system inputs and system
outputs in datasets. The command has been tested in a
simulation study. The results from this study show that
delayest is sensitive to: (i) The specified model or-
der. (ii) Stochastic elements in the dataset. (iii) Whether
all time delays are estimated during one execution of
delayest, or whether only one time delay is esti-
mated for each execution. The simulation study also
indicates that delayest has a systematic error: The
time delay estimates tend to decrease as the system or-
der increases. In simulation of a 3 input, 1 output sys-
tem, delayest estimated the time delays from the
three inputs to the output exactly correct only when the
following conditions were met: (i) The correct system
order was specified. (ii) No stochastic elements were
present. (iii) All three time delays were estimated dur-
ing one execution of delayest.

delayest was also tested on industrial data from Xs-

trata Nikkelverk, Kristiansand, Norway. These tests
confirmed that delayest is sensitive to: (i) The spec-
ified model order. (ii) Whether all time delays are esti-
mated during one execution of delayest, or whether
only one time delay is estimated for each execution.
Whether delayest is sensitive to stochastic elements
in the dataset could not be tested on the industrial data.
In general, the estimates of delayest deviated signif-
icantly from estimates based on process knowledge.

In this paper, a suggestion to improvement of
delayest is presented. This improvement makes
delayest less sensitive for unknown system order.
This improvement works only for deterministic LTI
systems.
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