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Abstract

In this paper we will discuss the approximate solution of a two degree
of freedom non-linear oscillator model subject to a simplified form for
the description of wave and current loadings proposed in [SI81] by the
averaging method. We will use this approximate solutions as basis for
further analysis of nonlinear models in order to assess damping and loading
terms that may give rise to ringing type response.

Introduction

A number of equations considered in the paper deal with the “ringing” problem
which takes place in the offshore structure. Namely these are listed as following:

The non-linear dynamic problem of the interaction of the periodic motion of
the vortexes in a current with an offshore structure is discussed and developed
in the paper based on a well-known non-linear model presented in [SI81]. In
order to solve the non-linear differential equations proposed to explain “ringing”
problem of the offshore structure the averaging method [BM61] has been used
to find the solution of the problem in question in the first approximation.

As a result a new method, based on Mathematica symbolic evaluations
[Wol03] which convert the usual averaging procedure [BM61] into a computer
routine, is developed for solving the nonlinear systems of differential equations.

The effects of vibrations on the offshore structure were also investigated
and a mechanical balance modeling was performed to explain the experimental
observations.

Non-linear vibration of the offshore structure under the disturbances pro-
duced by the flowing vortex is considered in detail when a number of resonances
occur in the system.

∗Formerly with StatoilHydro.

1

SIMS 49

www.scansims.org Proceedings of SIMS 2008
Oslo, Norway, October 7-8, 2008

196



2 Papusha, Jonassen and Gudmestad

An averaging procedure is applied to the non-linear dynamic equations of
the motion of the offshore structure to study the vibration of the structure under
the load generated by the flow of the current.

In this paper Mathematica input is given in bold typefaces followed directly
by the output whenever it exists, as the following example shows:
∫ πτ

0
sin
(

x
3

)

dx
∫ πτ

0
sin
(

x
3

)

dx
∫ πτ

0
sin
(

x
3

)

dx

6 sin2
(

πτ
6

)

The CPU timing has been done on a HP Compaq nx9420 computer with a
dual core Intel Centrino 2.16GHz CPU, running Mathematica 6.0 and a SuSE
Linux operating system.

The actual Mathematica 6.0 notebook, on which this paper is based, can be
downloaded from http://bluemaster.iu.hio.no/sims/pjg.nb. The notebook-
file contains the complete Mathematica code.

1. Dynamic Models of an Offshore Slender Struc-
ture

1.1. Equations of the Motion

The general second order ordinary differential equation for the horizontal re-
sponse y = y(t) of a one degree of freedom slender offshore structure when
subjected to constant nonlinear drag loading (that is the loading generated by
the velocity of a current) is according to experiments given per unit length of
the structure; see for example Sarpkaya and Issacsson [SI81], is presented below.

The most noteworthy among the oscillator models is one proposed by Harlen
and Currie (1970) [HC70] where a van der-Pol type-model soft non-linear os-
cillator for lift force is coupled to the body motion by a linear dependence on
cylinder velocity.

This model is based partly on suggestion by Birkhopff and Zarantonello
(1953) [BZ59] and by Bishop and Hassan (1963) [BH64] in connection with
their experiments with oscillating cylinders in uniform flow.

The pair of equations which results from this concept are

d2xr

dt2
+ 2ζs

dxr

dt
+ xr = a0Ω

2
0CL

d2CL

dt2
− αΩ0

dCL

dt
+ (γ /Ω0 )

(

dCL

dt

)

3 + Ω2
0CL = B

dxr

dt

(1)

The dimensionless functions xr = (x /D0 ) and CL = 2FL

(ρD0LV 2) are the vari-

ables (dimensionless parameters) of the motion of the system.

The parameters α and γ are the van der-Pol coefficients and B is an inter-
action parameter.

Finally, ζs represents the material damping factor for the elastic system.
There are no other damping imposed on the body.

Here the following desalinations are admitted:
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Non-Linear Wave-Oscillator Models for Transverse Vibrations 3

ωn = 2πfn =
√

k/m

Ω0 = f0/fn

Ωc = fc/fn

Ων = fν/fn

τn = ωnt

S0 =
f0D0

V
xr = (x /D0 )

CL =
2FL

(ρD0LV 2)

x̂r = (A /D0 )

x̂rm = (A /D0 )max

a0 =
ρD0Lf2

0

(2mS2
0ω2

nΩ2
0)

∆r = ζs/a0 = (2πζs) (πS0)
2/ρτ

ρτ = ρ /ρs = 2π3a0S
2
0 ;

ω0 = 2πf0

ων = 2πf∨

ωc = 2πfc

(2)

• m is the mass of the structure

• k is the linear stiffness of the structure

• c is a linear damper reaction coefficient

• D0 is the diameter of the slender structure

• ρ is the density of the fluid (water)

• Cd is the drag coefficient for the flow

• U(x, t) and |U(x, t)| are the velocity and the absolute value of the velocity
U of the constant flow (current) past the structure, x is the displacement.

This drag type loading is in general attributed to the shedding of vortices in
the downstream flow direction of the current.

2. The General Method of Averaging

The main idea of the paper is to construct an approximate time depending
solution of the non-linear system (1) at the time interval [0, 1/ǫ].

Usually the averaging method is to used to find out the first approximation
solution of any non-linear dynamic system (1) converted in to a standard form.
Then for the system in standard form the averaging procedure developed and
proposed by N. N. Bogolubov - N. M. Krilov (see [BM61]) is applied.

To use this method, the system (1) is first reduced to the standard form.
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4 Papusha, Jonassen and Gudmestad

d
⇀
x (t)

dt
= ǫ

⇀

F
(

⇀
x(t), t

)

(3)

where function
⇀

F
(

⇀
x(t), t

)

is T -periodic with respect to the second variable and

ǫ is a small parameter.
Systems of the form (3) represent a classic topic of the theory of differential

equations depending on ǫ - a small parameter and such systems have been
developed by a number of various methods. For example, topological methods
and vector field theory can be applied to study the system (3), (see, for instance,
[AK74], [Kam96], [MS67]).

The following auxiliary system is considered based on an averaging procedure

d
⇀
x0

dτ
=

⇀

F
(

⇀
x0

)

τ = ǫt

(4)

where the function at the right side of (4),
⇀

F
(

⇀
x0

)

, is evaluated by the integral

⇀

F

(

⇀

ζ

)

= (2π)−1

∫ 2π

0

⇀

F

(

⇀

ζ , t

)

dt (5)

Then a solution of the equation (3) as a series on the small parameter ǫ is written
as following

⇀
x(τ) =

⇀
x0(τ) + ǫ

⇀
x1(τ) + ǫ2

⇀
x2(τ) + · · · (6)

The isolated equilibrium states of system (4), which have non-zero topological

index with respect to the vector field
⇀

F
(

⇀
x0

)

, give rise to T -periodic solutions

of system (1). While the solutions of the Cauchy problem for system (1) are
close to the corresponding solutions of the Cauchy problem for system (5) on
the interval of length 1/ǫ.

The main method for reducing system (1) to standard form (2) consists in
the following change of variables

⇀
z (τ) = fs(

⇀
x (t), t, 0) (7)

where fs(
⇀
x (t), t, 0) denotes the solution

⇀
x(t) of (1) with the initial condition

⇀
x(0) =

⇀

X0 and ǫ = 0. Therefore, it is necessary to assume that the change of

variables (7) is T -periodic with respect to t for every T -periodic function
⇀
x(t)

in order to use the classical averaging principle (see [Bai95], [Sch00]).

3. Linear Problem. Symbolic Solutions of the
Linear Problem: Substitution Procedure

3.1. The Damped Motion of the Structure: The Full Inter-
active Linear Problem

Let us consider a linear problem of the motion of the structure which results
from the non-linear problem (1) when one avoids all of the non-linear terms and
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Non-Linear Wave-Oscillator Models for Transverse Vibrations 5

terms corresponding to the damped forces in the system of differential equations
(1).

Then a pair of linear differential equations resulting from the non-linear
conceptual system (1) are presented below.

d2xr

dt2
+ xr = a0Ω

2
0CL

d2CL

dt2
+ Ω2

0CL = B
dxr

dt

(8)

This system (8) corresponds to the interactive and the free coupling motion of
the rig and the vortex in the flow of the current.

There are a number of questions that follows from the linear problem (8):

• What is the motion of the offshore structure following from the linear
model represented by equations (8)?

• Does any periodic solution exist in the linear system (8)?

• How to obtain from the system (8) any general solution which will be
corresponded to the non-linear problem (1)?

In order to derive a general solution of the problem (8) a DSolveDSolveDSolve operator is
used to find a symbolic solution of the linear problem (8).

A well-known procedure is proposed to solve the system (8) using step by
step evaluation by the computer codes presented below.

sysInitial(X , y ):=
{

X + d2X
dt2

= a0Ω
2
0y, yΩ2

0 + d2y

dt2
= B dX

dt

}

;sysInitial(X , y ):=
{

X + d2X
dt2

= a0Ω
2
0y, yΩ2

0 + d2y

dt2
= B dX

dt

}

;sysInitial(X , y ):=
{

X + d2X
dt2

= a0Ω
2
0y, yΩ2

0 + d2y

dt2
= B dX

dt

}

;

X = xr(t); y = CL(t);X = xr(t); y = CL(t);X = xr(t); y = CL(t);

This code give us the following system of equations.

sysInitial[X, y]//TraditionalFormsysInitial[X, y]//TraditionalFormsysInitial[X, y]//TraditionalForm
{

xr(t) + x′′

r (t) = a0Ω
2
0CL(t), CL(t)Ω2

0 + C′′

L(t) = Bx′

r(t)
}

Then a general symbolic solution of the linear problem (8) is derived below

solSymbolic = DSolve [sysInitial[X, y], {xr[t], CL[t]} , t] //Simplify//Flatten;solSymbolic = DSolve [sysInitial[X, y], {xr[t], CL[t]} , t] //Simplify//Flatten;solSymbolic = DSolve [sysInitial[X, y], {xr[t], CL[t]} , t] //Simplify//Flatten;

The resulting Mathematica expression of solSymbolicsolSymbolicsolSymbolic is complex and con-
tains the RootSumRootSumRootSum operator so the result is not shown here. No periodic solu-
tions follows from the symbolic evaluations in clear shape of symbolic functions.
If one consider an interactive problem with a small parameter of the interaction
in the system when B ≪ 1, (that physically means a small influence of the
vortex on the motion of the rig), and if one transforms a symbolic solutions into
periodic functions using a series expansions of the general solutions as below

generalSolution =generalSolution =generalSolution =
Series [{CL(t), xr(t)} /. solSymbolic, {B, 0, 1}] //Normal//ExpToTrigSeries [{CL(t), xr(t)} /. solSymbolic, {B, 0, 1}] //Normal//ExpToTrigSeries [{CL(t), xr(t)} /. solSymbolic, {B, 0, 1}] //Normal//ExpToTrig
//ComplexExpand//Simplify////ComplexExpand//Simplify////ComplexExpand//Simplify//
TraditionalFormTraditionalFormTraditionalForm
{

1
2Ω0(Ω2

0
−1)2

(

− c3 cos(tΩ0)(Bta0 − 2)Ω5
0 − sin(tΩ0)(B(tc2 − c3)a0 − 2c2)Ω

4
0

+ (2Bc1 cos(t) − 2((Bc1 + 2c3) cos(tΩ0) + Bc4 sin(t)) + B(2c2 cos(t)
+ (tc3 − 2c2) cos(tΩ0) − 2c3 sin(t))a0)Ω

3
0 + sin(tΩ0)(−4c2 + 2Bc4
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6 Papusha, Jonassen and Gudmestad

+ B(tc2 + c3)a0)Ω
2
0 + 2(−Bc1 cos(t) + (Bc1 + c3) cos(tΩ0) + Bc4 sin(t))Ω0

+ 2(c2 − Bc4) sin(tΩ0)
)

,
1

2(Ω2

0
−1)3

(

Ba2
0((tc3 cos(t) + tc3 cos(tΩ0) + (tc2 + c3) sin(t))Ω3

0

+ (tc2 − 3c3) sin(tΩ0)Ω
2
0 − ((4c2 + tc3) cos(t) + (tc3 − 4c2) cos(tΩ0) + (tc2 −

3c3) sin(t))Ω0 − (tc2 + c3) sin(tΩ0))Ω
3
0 − a0(Ω

2
0 − 1)(−((2c3 + Btc4) cos(t) −

2c3 cos(tΩ0) + (Btc1 + 2c2 − Bc4) sin(t))Ω3
0 + 2c2 sin(tΩ0)Ω

2
0 + ((2Bc1 + 2c3 +

Btc4) cos(t) − 2(Bc1 + c3) cos(tΩ0) + (Btc1 + 2c2 − 3Bc4) sin(t))Ω0 − 2(c2 −

Bc4) sin(tΩ0))Ω0 + 2(c4 cos(t) + c1 sin(t))(Ω2
0 − 1)3

)

}

then unstable motion of the structure ({CL(t), xr(t)}→ ∞, when t → ∞) are
resulting from the symbolic expansions of the general solutions of the system
(9) obtained above. Hence the general solution of the linear system (8) can not
be used as a general solution of the system for the non-linear model (1). We
conclude that another general linear system derived from (1) has to be derived
for further evaluations.

4. Computer Procedure for Converting ODE to
Standard Form

4.1. No damped Motion of the Structure: Semi interactive
problem

In order to study the physical sense of the problem in question let us consider a
linear semi interactive problem that means the act of the motion of the vortex
on rig and no response from the rig to the motion of the vortex. A mathematical
formulation of such a mechanical problem corresponds to the problem described
by the following differential equations.

d2xr

dt2
+ xr = a0Ω

2
0CL

d2CL

dt2
+ Ω2

0CL = 0

(9)

Here a pair of linear differential equations is derived from the system (8) when
B → 0. The mechanical explanation of such a suggestion is explained above.

Now let us consider a general solution of the system (9) .

solSymbolic = DSolve [sysInitial[X, y]/.B → 0, {xr[t], CL[t]} , t]solSymbolic = DSolve [sysInitial[X, y]/.B → 0, {xr[t], CL[t]} , t]solSymbolic = DSolve [sysInitial[X, y]/.B → 0, {xr[t], CL[t]} , t]
//Simplify//Flatten;//Simplify//Flatten;//Simplify//Flatten;

A full form of the general symbolic solutions of the linear problem (9) is
presented below.

(generalSolution = solSymbolic//Factor)//TraditionalForm(generalSolution = solSymbolic//Factor)//TraditionalForm(generalSolution = solSymbolic//Factor)//TraditionalForm
{

CL(t) →
c2 sin (tΩ0) + c3 cos (tΩ0)Ω0

Ω0
,

xr(t) →
1

(Ω0 − 1) (Ω0 + 1)

(

c4 cos(t)Ω2
0 + c1 sin(t)Ω2

0 + c3 cos(t)a0Ω
2
0

−c3 cos (tΩ0) a0Ω
2
0 + c2 sin(t)a0Ω

2
0 − c2 sin (tΩ0) a0Ω0 − c4 cos(t) − c1 sin(t)

)

}
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Non-Linear Wave-Oscillator Models for Transverse Vibrations 7

A periodic general solution of the semi interactive system will be chosen as
a generated solution for the system of non-linear equations (1).

4.2. Standard Form of the System of Equations

According to the general averaging procedure let us convert a general symbolic
solution of the semi interactive linear equations (9) to the general standard form,
equations (3).

Here the slow time variables ci(τ), (τ = ǫt) are introduced by the formulas

CL(t, τ) =
sin(tΩ0)c2(τ)

Ω0
+ cos(tΩ0)c3(τ)

xr(t) =
1

Ω2
0 − 1

(a0Ω0((c3 cos(t) − c3 cos(tΩ0) + c2 sin(t))Ω0

− c2 sin(tΩ0)) + (c4 cos(t) + c1 sin(t))(Ω2
0 − 1))

(10)

Codes for the variables CL(t, τ) and xr(t, τ) in the slow time variable, given as
in (7), are written as below

(substitutionVortex = Part[generalSolution, 1]/.{CL(t) → CL(t, τ), c2 → c2(τ),(substitutionVortex = Part[generalSolution, 1]/.{CL(t) → CL(t, τ), c2 → c2(τ),(substitutionVortex = Part[generalSolution, 1]/.{CL(t) → CL(t, τ), c2 → c2(τ),
c3 → c3(τ) })//TraditionalFormc3 → c3(τ) })//TraditionalFormc3 → c3(τ) })//TraditionalForm

CL(t, τ) →
sin (tΩ0) c2(τ) + cos (tΩ0) Ω0c3(τ)

Ω0

(substitutionStructure =(substitutionStructure =(substitutionStructure =
Part[generalSolution, 2]/. {xr(t) → xr(t, τ), c1 → c1(τ), c2 → c2(τ), c3 → c3(τ),Part[generalSolution, 2]/.{xr(t) → xr(t, τ), c1 → c1(τ), c2 → c2(τ), c3 → c3(τ),Part[generalSolution, 2]/. {xr(t) → xr(t, τ), c1 → c1(τ), c2 → c2(τ), c3 → c3(τ),
c4 → c4(τ) }) //TraditionalFormc4 → c4(τ) }) //TraditionalFormc4 → c4(τ) }) //TraditionalForm

xr(t, τ) → 1
(Ω0−1)(Ω0+1) (sin(t)c1(τ)Ω2

0 + sin(t)a0c2(τ)Ω2
0 + cos(t)a0c3(τ)Ω2

0 −

cos(tΩ0)a0c3(τ)Ω2
0+cos(t)c4(τ)Ω2

0−sin(tΩ0)a0c2(τ)Ω0−sin(t)c1(τ)−cos(t)c4(τ))

Symbolic derivatives for
dCL(t, τ)

dt
and

dxr(t, τ)

dt
are accounted in symbolic form

by the operators

(substitutionVelocityVortex =(substitutionVelocityVortex =(substitutionVelocityVortex =
D[Part[substitutionVortex, 2], t]) //TraditionalFormD[Part[substitutionVortex, 2], t]) //TraditionalFormD[Part[substitutionVortex, 2], t]) //TraditionalForm

cos (tΩ0)Ω0c2(τ) − sin (tΩ0)Ω2
0c3(τ)

Ω0

(substitutionVelocityStructure = D[Part[substitutionStructure, 2], t])(substitutionVelocityStructure = D[Part[substitutionStructure, 2], t])(substitutionVelocityStructure = D[Part[substitutionStructure, 2], t])
//TraditionalForm//TraditionalForm//TraditionalForm

1
(Ω0−1)(Ω0+1) (sin(tΩ0)a0c3(τ)Ω3

0 + cos(t)c1(τ)Ω2
0

+ cos(t)a0c2(τ)Ω2
0 − cos(tΩ0)a0c2(τ)Ω2

0 − sin(t)a0c3(τ)Ω2
0

− sin(t)c4(τ)Ω2
0 − cos(t)c1(τ) + sin(t)c4(τ))

Then other substitutions for CL(t) and
dCL(t, τ)

dt
are presented as following

CL(t, τ) = c3(τ) cos (tΩ0) +
c2(τ) sin (tΩ0)

Ω0

dCL(t, τ)

dt
= c2(τ) cos (tΩ0) − c3(τ)Ω0 sin (tΩ0)

(11)
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8 Papusha, Jonassen and Gudmestad

In order to find a full set of equations for the new set of slowly variables {c1 →
c1(τ), c2 → c2(τ), c3 → c3(τ), c4 → c4(τ)}, one has to construct a new system
of equations regarding the new variables {c1(τ), c2(τ), c3(τ), c4(τ)} and their
derivatives.

C′

L(t, τ)
∣

∣

τ→t
=

dCL(t, τ)

dt
(12)

Then a first standard form of equations are developed from (11) and (12) and
by codes the below

(eq1 = ((D[Part[substitutionVortex, 2]/.t → τ, τ ]/.{cos(τΩ0) → cos(tΩ0),(eq1 = ((D[Part[substitutionVortex, 2]/.t → τ, τ ]/.{cos(τΩ0) → cos(tΩ0),(eq1 = ((D[Part[substitutionVortex, 2]/.t → τ, τ ]/.{cos(τΩ0) → cos(tΩ0),
sin(τΩ0) → sin(tΩ0)}) == (substitutionVelocityVortex))//Simplify)sin(τΩ0) → sin(tΩ0)}) == (substitutionVelocityVortex))//Simplify)sin(τΩ0) → sin(tΩ0)}) == (substitutionVelocityVortex))//Simplify)
//TraditionalForm//TraditionalForm//TraditionalForm

sin (tΩ0) c′2(τ)

Ω0
+ cos (tΩ0) c′3(τ) = 0

Substitutions for xr(t, τ) and
dxr(t, τ)

dt
are proposed as following

xr(t, τ) =
1

Ω2
0 − 1

(a0Ω0(Ω0(sin(t)c2(τ) + cos(t)c3(τ) − cos(tΩ0)c3(τ))

− sin(tΩ0)c2(τ)) + (Ω2
0 − 1)(sin(t)c1(τ) + cos(t)c4(τ)))

dxr(t, τ)

dt
=

1

Ω2
0 − 1

(a0((cos(t) − cos(tΩ0))c2(τ) + (sin(tΩ0)Ω0

− sin(t))c3(τ))Ω2
0 + cos(t)(Ω2

0 − 1)c1(τ) − sin(t)(Ω2
0 − 1)c4(τ))

(13)

The second step of the evaluation consists of finding the equality from (13)

x′

r(t, τ) =
dxr(t, τ)

dt
(14)

So the second equation for the standard form of the system is derived by the
code as following

(eq2 = ((D[Part[substitutionStructure, 2]/.t → τ, τ ]/.{cos(τΩ0) → cos(tΩ0),(eq2 = ((D[Part[substitutionStructure, 2]/.t → τ, τ ]/.{cos(τΩ0) → cos(tΩ0),(eq2 = ((D[Part[substitutionStructure, 2]/.t → τ, τ ]/.{cos(τΩ0) → cos(tΩ0),
sin(τΩ0) → sin(tΩ0), cos(τ) → cos(t), sin(τ) → sin(t)}) ==sin(τΩ0) → sin(tΩ0), cos(τ) → cos(t), sin(τ) → sin(t)}) ==sin(τΩ0) → sin(tΩ0), cos(τ) → cos(t), sin(τ) → sin(t)}) ==
(substitutionVelocityStructure))//Simplify)//TraditionalForm(substitutionVelocityStructure))//Simplify)//TraditionalForm(substitutionVelocityStructure))//Simplify)//TraditionalForm

1
Ω2

0
−1

(sin(t)(Ω2
0 − 1)c′1(τ) + a0Ω0((sin(t)Ω0

− sin(tΩ0))c
′

2(τ) + (cos(t) − cos(tΩ0))Ω0c
′

3(τ)) + cos(t)(Ω2
0 − 1)c′4(τ)) = 0

The initial system of differential equations (1) is reduced to the standard
form of equations

d2X

dt2
+ X = a0Ω

2
0y + ǫ

(

−2ζs

dX

dt

)

d2y

dt2
+ Ω2

0y = ǫ

(

B
dX

dt
+ αΩ0

dy

dt
− (γ /Ω0 )

(

dy

dt

)3
) (15)

as well the same system (15) in codes is given to the standard form of equations.

(eq3 =(eq3 =(eq3 =
((D[substitutionVelocityVortex/.t → τ, τ ]/.{cos(τΩ0) → cos(tΩ0),((D[substitutionVelocityVortex/.t → τ, τ ]/.{cos(τΩ0) → cos(tΩ0),((D[substitutionVelocityVortex/.t → τ, τ ]/.{cos(τΩ0) → cos(tΩ0),
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Non-Linear Wave-Oscillator Models for Transverse Vibrations 9

sin(τΩ0) → sin(tΩ0)}) + Ω2
0 Part[substitutionVortex, 2] ==sin(τΩ0) → sin(tΩ0)}) + Ω2
0 Part[substitutionVortex, 2] ==sin(τΩ0) → sin(tΩ0)}) + Ω2
0 Part[substitutionVortex, 2] ==

ε(B(substitutionVelocityStructure) + αΩ0(substitutionVelocityVortex)ε(B(substitutionVelocityStructure) + αΩ0(substitutionVelocityVortex)ε(B(substitutionVelocityStructure) + αΩ0(substitutionVelocityVortex)
−(γ /Ω0 )(substitutionVelocityVortex)3))//Simplify)//TraditionalForm−(γ /Ω0 )(substitutionVelocityVortex)3))//Simplify)//TraditionalForm−(γ /Ω0 )(substitutionVelocityVortex)3))//Simplify)//TraditionalForm

cos(tΩ0)c
′

2(τ) = ε

(

γ(sin(tΩ0)Ω0c3(τ)−cos(tΩ0)c2(τ))3

Ω0

− αΩ0(sin(tΩ0)Ω0c3(τ)

− cos(tΩ0)c2(τ)) + 1
Ω2

0
−1

B
(

a0((cos(t) − cos(tΩ0))c2(τ) + (sin(tΩ0)Ω0

− sin(t))c3(τ)
)

Ω2
0 + cos(t)(Ω2

0 − 1)c1(τ) − sin(t)(Ω2
0 − 1)c4(τ))

)

+ sin(tΩ0)Ω0c
′

3(τ)

(eq4 =(eq4 =(eq4 =
((D[substitutionVelocityStructure/.t → τ, τ ]/.{cos(τΩ0) → cos(tΩ0),((D[substitutionVelocityStructure/.t → τ, τ ]/.{cos(τΩ0) → cos(tΩ0),((D[substitutionVelocityStructure/.t → τ, τ ]/.{cos(τΩ0) → cos(tΩ0),
sin(τΩ0) → sin(tΩ0), cos(τ) → cos(t), sin(τ) → sin(t)})sin(τΩ0) → sin(tΩ0), cos(τ) → cos(t), sin(τ) → sin(t)})sin(τΩ0) → sin(tΩ0), cos(τ) → cos(t), sin(τ) → sin(t)})
+Part[substitutionStructure, 2] == a0Ω

2
0Part[substitutionVortex, 2]+Part[substitutionStructure, 2] == a0Ω
2
0Part[substitutionVortex, 2]+Part[substitutionStructure, 2] == a0Ω
2
0Part[substitutionVortex, 2]

+ε(−2ζssubstitutionVelocityStructure))//Simplify)//TraditionalForm+ε(−2ζssubstitutionVelocityStructure))//Simplify)//TraditionalForm+ε(−2ζssubstitutionVelocityStructure))//Simplify)//TraditionalForm
1

Ω2

0
−1

(sin(tΩ0)a0c
′

3(τ)Ω3
0+cos(t)a0c

′

2(τ)Ω2
0−cos(tΩ0)a0c

′

2(τ)Ω2
0−sin(t)a0c

′

3(τ)Ω2
0−

sin(t)c′4(τ)Ω2
0+2εζs(a0((cos(t)−cos(tΩ0))c2(τ)+(sin(tΩ0)Ω0−sin(t))c3(τ))Ω2

0+
cos(t)(Ω2

0−1)c1(τ)−sin(t)(Ω2
0−1)c4(τ))+cos(t)(Ω2

0−1)c′1(τ)+sin(t)c′4(τ)) = 0

Finally, the following system of differential equations regarding the slowly
variables ci(τ) written in the “slow” time τ is presented in the standard form
of the differential equations (3).

(sol1 = Solve[{eq1, eq2, eq3, eq4}, {c′1(τ), c′2(τ), c′3(τ), c′4(τ)}](sol1 = Solve[{eq1, eq2, eq3, eq4}, {c′1(τ), c′2(τ), c′3(τ), c′4(τ)}](sol1 = Solve[{eq1, eq2, eq3, eq4}, {c′1(τ), c′2(τ), c′3(τ), c′4(τ)}]
//Flatten//Simplify) //TraditionalForm//Flatten//Simplify) //TraditionalForm//Flatten//Simplify) //TraditionalForm
{

c′1(τ) → − 1
8(Ω2

0
−1)2

ε(16 cos(t)ζs(Ω
2
0−1)(a0((cos(t)−cos(tΩ0))c2(τ)+(sin(tΩ0)Ω0−

sin(t))c3(τ))Ω2
0 + cos(t)(Ω2

0 − 1)c1(τ) − sin(t)(Ω2
0 − 1)c4(τ)) − 2(cos(t)

−cos(tΩ0))a0Ω0(4 sin(tΩ0)c3(τ)(γ sin2(tΩ0)c3(τ)2−α)Ω5
0+(4B sin(tΩ0)a0c3(τ)+

4 cos(tΩ0)c2(τ)(α − 3γ sin2(tΩ0)c3(τ)2))Ω4
0 + (−3γ sin(tΩ0)c3(τ)3

+ γ sin(3tΩ0)c3(τ)3 + 3γ sin(tΩ0)c2(τ)2c3(τ) + 3γ sin(3tΩ0)c2(τ)2c3(τ)
+4α sin(tΩ0)c3(τ)+4B cos(t)c1(τ)+4Ba0((cos(t)−cos(tΩ0))c2(τ)−sin(t)c3(τ))−
4B sin(t)c4(τ))Ω3

0−4 cos(tΩ0)c2(τ)(γ cos2(tΩ0)c2(τ)2−3γ sin2(tΩ0)c3(τ)2+α)Ω2
0

− 4(3γ cos2(tΩ0) sin(tΩ0)c3(τ)c2(τ)2 + B cos(t)c1(τ) − B sin(t)c4(τ))Ω0

+ 4γ cos3(tΩ0)c2(τ)3)),
c′4(τ) → 1

8(Ω2

0
−1)2

ε(16 sin(t)ζs(Ω
2
0−1)(a0((cos(t)−cos(tΩ0))c2(τ)+(sin(tΩ0)Ω0−

sin(t))c3(τ))Ω2
0 + cos(t)(Ω2

0 − 1)c1(τ) − sin(t)(Ω2
0 − 1)c4(τ)) + 2a0(sin(tΩ0) −

sin(t)Ω0)(4 sin(tΩ0)c3(τ)(γ sin2(tΩ0)c3(τ)2 − α)Ω5
0 + (4B sin(tΩ0)a0c3(τ)

+ 4 cos(tΩ0)c2(τ)(α − 3γ sin2(tΩ0)c3(τ)2))Ω4
0 + (−3γ sin(tΩ0)c3(τ)3

+ γ sin(3tΩ0)c3(τ)3 + 3γ sin(tΩ0)c2(τ)2c3(τ) + 3γ sin(3tΩ0)c2(τ)2c3(τ)
+4α sin(tΩ0)c3(τ)+4B cos(t)c1(τ)+4Ba0((cos(t)−cos(tΩ0))c2(τ)−sin(t)c3(τ))−
4B sin(t)c4(τ))Ω3

0−4 cos(tΩ0)c2(τ)(γ cos2(tΩ0)c2(τ)2−3γ sin2(tΩ0)c3(τ)2+α)Ω2
0−

4(3γ cos2(tΩ0) sin(tΩ0)c3(τ)c2(τ)2 + B cos(t)c1(τ) − B sin(t)c4(τ))Ω0

+ 4γ cos3(tΩ0)c2(τ)3)),
c′2(τ) → 1

Ω0(Ω2

0
−1)

ε cos(tΩ0)((γ sin3(tΩ0)c3(τ)3 − α sin(tΩ0)c3(τ))Ω5
0

+ (B sin(tΩ0)a0c3(τ) + cos(tΩ0)c2(τ)(α − 3γ sin2(tΩ0)c3(τ)2))Ω4
0

+ (−γ sin3(tΩ0)c3(τ)3 + 3γ cos2(tΩ0) sin(tΩ0)c2(τ)2c3(τ) + α sin(tΩ0)c3(τ)
+B cos(t)c1(τ)+Ba0((cos(t)−cos(tΩ0))c2(τ)−sin(t)c3(τ))−B sin(t)c4(τ))Ω3

0−
cos(tΩ0)c2(τ)(γ cos2(tΩ0)c2(τ)2 − 3γ sin2(tΩ0)c3(τ)2 + α)Ω2

0
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+ (−3γ cos2(tΩ0) sin(tΩ0)c3(τ)c2(τ)2 − B cos(t)c1(τ) + B sin(t)c4(τ))Ω0

+ γ cos3(tΩ0)c2(τ)3),
c′3(τ) → 1

Ω2

0
(Ω2

0
−1)

ε sin(tΩ0)(sin(tΩ0)c3(τ)(α − γ sin2(tΩ0)c3(τ)2)Ω5
0

− (B sin(tΩ0)a0c3(τ) + cos(tΩ0)c2(τ)(α − 3γ sin2(tΩ0)c3(τ)2))Ω4
0

+ (γ sin3(tΩ0)c3(τ)3 − 3γ cos2(tΩ0) sin(tΩ0)c2(τ)2c3(τ) − α sin(tΩ0)c3(τ)
−B cos(t)c1(τ)+Ba0((cos(tΩ0)−cos(t))c2(τ)+sin(t)c3(τ))+B sin(t)c4(τ))Ω3

0 +
cos(tΩ0)c2(τ)(γ cos2(tΩ0)c2(τ)2 − 3γ sin2(tΩ0)c3(τ)2 + α)Ω2

0

+ (3γ cos2(tΩ0) sin(tΩ0)c3(τ)c2(τ)2 + B cos(t)c1(τ) − B sin(t)c4(τ))Ω0

− γ cos3(tΩ0)c2(τ)3)

}

4.3. Averaging Procedure of Evaluation in Mathematica

In order to obtain a system of differential equations of the first approximation in
the form (4) the following main code of symbolic integration in the procedural
complex code is applied. The resulting output takes several pages and is omitted
here. The TimingTimingTiming operator also shows that the computation requires a lot of
CPU time.

(system = Table[Apply[Equal, Rule[Part[sol1, i, 1],(system = Table[Apply[Equal, Rule[Part[sol1, i, 1],(system = Table[Apply[Equal, Rule[Part[sol1, i, 1],
(2π)−1Integrate[Part[sol1, i, 2], {t, 0, 2π}]]], {i, 1, 4}]//Simplify); //Timing(2π)−1Integrate[Part[sol1, i, 2], {t, 0, 2π}]]], {i, 1, 4}]//Simplify); //Timing(2π)−1Integrate[Part[sol1, i, 2], {t, 0, 2π}]]], {i, 1, 4}]//Simplify); //Timing

{241.767, Null}

As a result an averaging system of the first approximation in the form of
(4) is obtained in the set of the new variables {ci[τ ]} and in a standard form of
evaluation.

4.4. Steady State Solutions

Firstly let us consider a set of the steady state positions of the system derived
from the equations of the first approximation given by the code above. A reso-
nance condition in the system is taken into consideration.

A set of stationery points of the non-linear averaging system implies by
operator

ǫ(2π)−1

∫ 2π

0

⇀

F
(

⇀
x0, t

)

dt = 0 (16)

A computer code to find a set of the parameters of the steady state positions
(points) of the system (16) is presented below.

A symbolic solution for the subharmonic resonance is derived below. Again
the output takes several pages and is not shown here. The computation also
requires some CPU time.
(solutionStationery = Solve[system/.{c′1(τ) → 0, c′2(τ) → 0, c′3(τ) → 0,(solutionStationery = Solve[system/.{c′1(τ) → 0, c′2(τ) → 0, c′3(τ) → 0,(solutionStationery = Solve[system/.{c′1(τ) → 0, c′2(τ) → 0, c′3(τ) → 0,
c′4(τ) → 0}/.{Ω0 → 1/2}, {c1[τ ], c2[τ ], c3[τ ], c4[τ ]}]c′4(τ) → 0}/.{Ω0 → 1/2}, {c1[τ ], c2[τ ], c3[τ ], c4[τ ]}]c′4(τ) → 0}/.{Ω0 → 1/2}, {c1[τ ], c2[τ ], c3[τ ], c4[τ ]}]
//Chop//Flatten//Simplify); //Timing//Chop//Flatten//Simplify); //Timing//Chop//Flatten//Simplify); //Timing

{33.1781, Null}

A numerical solution is given below.

(solRingingMianResonance =(solRingingMianResonance =(solRingingMianResonance =
Solve[system/.{c′1(τ) → 0, c′2(τ) → 0, c′3(τ) → 0, c′4(τ) → 0}/.{ζs → .001,Solve[system/.{c′1(τ) → 0, c′2(τ) → 0, c′3(τ) → 0, c′4(τ) → 0}/.{ζs → .001,Solve[system/.{c′1(τ) → 0, c′2(τ) → 0, c′3(τ) → 0, c′4(τ) → 0}/.{ζs → .001,

SIMS 49

www.scansims.org Proceedings of SIMS 2008
Oslo, Norway, October 7-8, 2008

205



Non-Linear Wave-Oscillator Models for Transverse Vibrations 11

a0 → .1, Ω0 → 1.001, α → 1.1, γ → .1, B → .2, ε → 1},a0 → .1, Ω0 → 1.001, α → 1.1, γ → .1, B → .2, ε → 1},a0 → .1, Ω0 → 1.001, α → 1.1, γ → .1, B → .2, ε → 1},
{c1[τ ], c2[τ ], c3[τ ], c4[τ ]}]//Chop//Flatten//Simplify)//TraditionalForm{c1[τ ], c2[τ ], c3[τ ], c4[τ ]}]//Chop//Flatten//Simplify)//TraditionalForm{c1[τ ], c2[τ ], c3[τ ], c4[τ ]}]//Chop//Flatten//Simplify)//TraditionalForm
{

c1[τ ] → −11.511− 1.21678i, c4[τ ] → 0.065096− 215.135i, c2[τ ] →
0.414104+0.024299i, c3[τ ] → −0.00129986+7.72693i, c1[τ ] → −11.511+1.21678i,
c4[τ ] → 0.065096 + 215.135i, c2[τ ] → 0.414104− 0.024299i, c3[τ ] →
− 0.00129986− 7.72693i, c1[τ ] → −3.93203, c4[τ ] → 0.533678, c2[τ ] → 3.39579,
c3[τ ] → −0.0106576, c1[τ ] → 0, c4[τ ] → 0, c2[τ ] → 0, c3[τ ] → 0, c1[τ ] → −1.24727i,
c4[τ ] → −230.039i, c2[τ ] → 0.0249083i, c3[τ ] → 7.92045i, c1[τ ] → 1.24727i,
c4[τ ] → 230.039i, c2[τ ] → −0.0249083i, c3[τ ] → −7.92045i, c1[τ ] → 3.93203,
c4[τ ] → −0.533678, c2[τ ] → −3.39579, c3[τ ] → 0.0106576, c1[τ ] → 11.511 −
1.21678i, c4[τ ] → −0.065096− 215.135i, c2[τ ] → −0.414104+ 0.024299i, c3[τ ] →
0.00129986+7.72693i, c1[τ ] → 11.511+1.21678i, c4[τ ] → −0.065096+215.135i,
c2[τ ] → −0.414104− 0.024299i, c3[τ ] → 0.00129986− 7.72693i

}

Then the numerical solutions according to a steady state motion for reso-
nance conditions Ω0 → 1/2 occurring in a dynamic system are presented below.

(solRingingSubHarmonic =(solRingingSubHarmonic =(solRingingSubHarmonic =
Solve[system/.{c′1(τ) → 0, c′2(τ) → 0, c′3(τ) → 0, c′4(τ) → 0}/.{ζs → .001,Solve[system/.{c′1(τ) → 0, c′2(τ) → 0, c′3(τ) → 0, c′4(τ) → 0}/.{ζs → .001,Solve[system/.{c′1(τ) → 0, c′2(τ) → 0, c′3(τ) → 0, c′4(τ) → 0}/.{ζs → .001,
a0 → .1, Ω0 → 1/2, α → 1.1, γ → .1, B → .2, ε → 1},a0 → .1, Ω0 → 1/2, α → 1.1, γ → .1, B → .2, ε → 1},a0 → .1, Ω0 → 1/2, α → 1.1, γ → .1, B → .2, ε → 1},
{c1[τ ], c2[τ ], c3[τ ], c4[τ ]}]//Chop//Flatten//Simplify)//TraditionalForm{c1[τ ], c2[τ ], c3[τ ], c4[τ ]}]//Chop//Flatten//Simplify)//TraditionalForm{c1[τ ], c2[τ ], c3[τ ], c4[τ ]}]//Chop//Flatten//Simplify)//TraditionalForm
{

c1[τ ] → −0.057337, c4[τ ] → −1.14342, c2[τ ] → −1.72011, c3[τ ] → 0, c1[τ ] →
0, c4[τ ] → 0, c2[τ ] → 0, c3[τ ] → −4.05223, c1[τ ] → 0, c4[τ ] → 0, c2[τ ] → 0, c3[τ ] →
0, c1[τ ] → 0, c4[τ ] → 0, c2[τ ] → 0, c3[τ ] → −0.814897i, c1[τ ] → 0, c4[τ ] →
0, c2[τ ] → 0, c3[τ ] → −0.814897i, c1[τ ] → 0, c4[τ ] → 0, c2[τ ] → 0, c3[τ ] →
0.814897i, c1[τ ] → 0, c4[τ ] → 0, c2[τ ] → 0, c3[τ ] → 0.814897i, c1[τ ] → 0, c4[τ ] →
0, c2[τ ] → 0, c3[τ ] → 4.05223, c1[τ ] → 0.057337, c4[τ ] → 1.14342, c2[τ ] → 1.72011,
c3[τ ] → 0

}

A set of other points in the superharmonic resonance condition is obtained
by the operator below.

(solRingingSuperHarmonic =(solRingingSuperHarmonic =(solRingingSuperHarmonic =
Solve[system/.{c′1(τ) → 0, c′2(τ) → 0, c′3(τ) → 0, c′4(τ) → 0}/.{ζs → .04,Solve[system/.{c′1(τ) → 0, c′2(τ) → 0, c′3(τ) → 0, c′4(τ) → 0}/.{ζs → .04,Solve[system/.{c′1(τ) → 0, c′2(τ) → 0, c′3(τ) → 0, c′4(τ) → 0}/.{ζs → .04,
a0 → .1, Ω0 → 2, α → 1.1, γ → .1, B → .2, ε → 1},a0 → .1, Ω0 → 2, α → 1.1, γ → .1, B → .2, ε → 1},a0 → .1, Ω0 → 2, α → 1.1, γ → .1, B → .2, ε → 1},
{c1[τ ], c2[τ ], c3[τ ], c4[τ ]}]//Chop//Flatten//Simplify)//TraditionalForm{c1[τ ], c2[τ ], c3[τ ], c4[τ ]}]//Chop//Flatten//Simplify)//TraditionalForm{c1[τ ], c2[τ ], c3[τ ], c4[τ ]}]//Chop//Flatten//Simplify)//TraditionalForm
{

c1[τ ] → −1.01505, c4[τ ] → 0, c2[τ ] → 7.61285, c3[τ ] → 0, c1[τ ] → 0, c4[τ ] →
−0.507524, c2[τ ] → 0, c3[τ ] → 3.80643, c1[τ ] → 0, c4[τ ] → −0.507524, c2[τ ] →
0, c3[τ ] → 3.80643, c1[τ ] → 0, c4[τ ] → 0, c2[τ ] → 0, c3[τ ] → 0, c1[τ ] → 0, c4[τ ] →
0.507524, c2[τ ] → 0, c3[τ ] → −3.80643, c1[τ ] → 0, c4[τ ] → 0.507524, c2[τ ] →
0, c3[τ ] → −3.80643, c1[τ ] → 1.01505, c4[τ ] → 0, c2[τ ] → −7.61285, c3[τ ] → 0

}

(solRingingSuperHarmonic =(solRingingSuperHarmonic =(solRingingSuperHarmonic =
Solve[system/.{c′1(τ) → 0, c′2(τ) → 0, c′3(τ) → 0, c′4(τ) → 0}/.Solve[system/.{c′1(τ) → 0, c′2(τ) → 0, c′3(τ) → 0, c′4(τ) → 0}/.Solve[system/.{c′1(τ) → 0, c′2(τ) → 0, c′3(τ) → 0, c′4(τ) → 0}/.
{ζs → .0001, a0 → .1, Ω0 → 1/3 + .001, α → 1.1, γ → .1, B → .2, ε → 1},{ζs → .0001, a0 → .1, Ω0 → 1/3 + .001, α → 1.1, γ → .1, B → .2, ε → 1},{ζs → .0001, a0 → .1, Ω0 → 1/3 + .001, α → 1.1, γ → .1, B → .2, ε → 1},
{c1[τ ], c2[τ ], c3[τ ], c4[τ ]}]//Chop//Flatten//{c1[τ ], c2[τ ], c3[τ ], c4[τ ]}]//Chop//Flatten//{c1[τ ], c2[τ ], c3[τ ], c4[τ ]}]//Chop//Flatten//
Simplify)//TraditionalFormSimplify)//TraditionalFormSimplify)//TraditionalForm
{

c1[τ ] → −0.753868, c4[τ ] → −0.058738, c2[τ ] → −1.28772, c3[τ ] → −0.0978205,
c1[τ ] → −0.729116, c4[τ ] → 0.0987087, c2[τ ] → 0.679076, c3[τ ] → 3.27399, c1[τ ] →
−0.72342, c4[τ ] → −0.041904, c2[τ ] → 0.638087, c3[τ ] → −3.32979, c1[τ ] →
−0.0144799, c4[τ ] → −0.739561, c2[τ ] → −1.15061, c3[τ ] → −1.97256, c1[τ ] →
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0, c4[τ ] → 0, c2[τ ] → 0, c3[τ ] → 0, c1[τ ] → 0.0144799, c4[τ ] → 0.739561, c2[τ ] →
1.15061, c3[τ ] → 1.97256, c1[τ ] → 0.72342, c4[τ ] → 0.041904, c2[τ ] → −0.638087,
c3[τ ] → 3.32979, c1[τ ] → 0.729116, c4[τ ] → −0.0987087, c2[τ ] → −0.679076,
c3[τ ] → −3.27399, c1[τ ] → 0.753868, c4[τ ] → 0.058738, c2[τ ] → 1.28772, c3[τ ] →
0.0978205

}

5. Numerical Simulation for the Main Resonance
Condition.

Let us consider a numerical solution of the system of the first approximations
when a main resonance condition is taking place in the system. The damping
parameter of the rig ζs is the single parameter being varied in the system.

The structural damping ζs is associated with a constant parameter of the
offshore structure. As is well known in structural analysis, the damping term
changes the natural frequency of motion of the structure and the general motion
of the system.

A code for numerical solution is presented below with an initial conditions
taken very close to the steady state position.

It should be noted that the resulting solution as function of slowly time
should be analyzed further to check whether other solution schemes, possibly
with other values of the structural damping parameter ζs, would reveal different
kind of solutions to the problem.

solNumerical =solNumerical =solNumerical =
NDSolve[Join[system/.{ζs → .0191, a0 → .1, Ω0 → 1.001, α → 1.1, γ → .1,NDSolve[Join[system/.{ζs → .0191, a0 → .1, Ω0 → 1.001, α → 1.1, γ → .1,NDSolve[Join[system/.{ζs → .0191, a0 → .1, Ω0 → 1.001, α → 1.1, γ → .1,
B → .2, ε → 1}, {c1(0) == −.06410, c2(0) == −1.9, c3(0) == 0.0,B → .2, ε → 1}, {c1(0) == −.06410, c2(0) == −1.9, c3(0) == 0.0,B → .2, ε → 1}, {c1(0) == −.06410, c2(0) == −1.9, c3(0) == 0.0,
c4(0) == −.120}], {c1(τ), c2(τ, c3(τ), c4(τ)}, {τ, 0, 2900}]//Flatten;c4(0) == −.120}], {c1(τ), c2(τ, c3(τ), c4(τ)}, {τ, 0, 2900}]//Flatten;c4(0) == −.120}], {c1(τ), c2(τ, c3(τ), c4(τ)}, {τ, 0, 2900}]//Flatten;

The numeric solution of the ODE in the first approximation with the struc-
tural damping parameter ζs = 0.0191 given in [SI81] reveals a solution that is
quite similar to the solution found by numerical integration of the exact solution
in [JG06].

A stable motion of the structure given in the phase space of the slowly
varying parameters of the amplitudes is presented in figure 1 to figure 5 below.
The wave’s motion of the vortex is shown in figure 3 and in figure 4.
The graphics in figure 5 shows the trajectory of the curve (c1(τ), c3(τ), c4(τ))
for τ ∈ [10, 2800]. The trajectory approaches a stationary point.
As a result of the simulation of the structure with main resonance condition in
the system a set of the stable amplitudes of vibrations are obtained.

A numeric simulation of the system when ζs < 0.0191 based on the code
below is given in figure 6 to figure 10.

solNumerical =solNumerical =solNumerical =
NDSolve[Join[system/.{ζs → .001, a0 → .1, Ω0 → 1.001, α → 1.1, γ → .1, B → .2,NDSolve[Join[system/.{ζs → .001, a0 → .1, Ω0 → 1.001, α → 1.1, γ → .1, B → .2,NDSolve[Join[system/.{ζs → .001, a0 → .1, Ω0 → 1.001, α → 1.1, γ → .1, B → .2,
ε → 1}, {c1(0) == −.0641, c2(0) == −1.9, c3(0) == .0, c4(0) == −.120}],ε → 1}, {c1(0) == −.0641, c2(0) == −1.9, c3(0) == .0, c4(0) == −.120}],ε → 1}, {c1(0) == −.0641, c2(0) == −1.9, c3(0) == .0, c4(0) == −.120}],
{c1(τ), c2(τ), c3(τ), c4(τ)}, {τ, 0, 2900}]//Flatten;{c1(τ), c2(τ), c3(τ), c4(τ)}, {τ, 0, 2900}]//Flatten;{c1(τ), c2(τ), c3(τ), c4(τ)}, {τ, 0, 2900}]//Flatten;

We will now find other kind of motion of the structure given by the numerical
form of the solution for the equations of the first approximation. Examples of
the non-stationary motion of the specific point in the phase space are presented
in figure 6 to figure 10.
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Figure 1: Stable motion of c1(τ ) to a stationary point. Here ζs = 0.0191 and Ω0 =

1.001. Here a0 = 0.1, α = 1.1, γ = 0.1, B = 0.2 and ǫ = 1. The plot on the left shows

the component c1(τ ) as a function of time, on the right, the phasespace of (c1, c
′

1).
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Figure 2: Stable motion of c2(τ ) to a stationary point. Here ζs = 0.0191 and Ω0 =

1.001. Here a0 = 0.1, α = 1.1, γ = 0.1, B = 0.2 and ǫ = 1. The plot on the left shows

the component c2(τ ) as a function of time, on the right, the phasespace of (c2, c
′

2).
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Figure 3: The wave’s motion of the vortex. Stable motion of c3(τ ) to a stationary

point. Here ζs = 0.0191 and Ω0 = 1.001. Here a0 = 0.1, α = 1.1, γ = 0.1, B = 0.2

and ǫ = 1. The plot on the left shows the component c3(τ ) as a function of time, on

the right, the phasespace of (c3, c
′

3).
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Figure 4: The wave’s motion of the vortex. Stable motion of c4(τ ) to a stationary

point. Here ζs = 0.0191 and Ω0 = 1.001. Here a0 = 0.1, α = 1.1, γ = 0.1, B = 0.2

and ǫ = 1. The plot on the left shows the component c4(τ ) as a function of time, on

the right, the phasespace of (c4, c
′

4).
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Figure 5: The trajectory of the projection of a curve in 4-space to 3-space, π1,3,4c(τ ) =

(c1(τ ), c3(τ ), c4(τ )) for τ ∈ [10, 2800] for ζs = 0.0191 and Ω0 = 1.001. Here a0 = 0.1,

α = 1.1, γ = 0.1, B = 0.2 and ǫ = 1. Since each componentfunction tends to a

stationary solution, the trajectory of τ → c(τ ) also approaches a stationary point.
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Figure 6: Quasiperiodic motion of c1(τ ). Here ζs = 0.001 and Ω0 = 1.001. Here

a0 = 0.1, α = 1.1, γ = 0.1, B = 0.2 and ǫ = 1. The plot on the left shows the

component c1(τ ) as a function of time, on the right, the phasespace of (c1, c
′

1).
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Figure 7: Quasiperiodic motion of c2(τ ). Here ζs = 0.001 and Ω0 = 1.001. Here

a0 = 0.1, α = 1.1, γ = 0.1, B = 0.2 and ǫ = 1. The plot on the left shows the

component c2(τ ) as a function of time, on the right, the phasespace of (c2, c
′

2).

The wave’s motion of the vortex is shown in figure 8 and in figure 9.

Figure 10 shows the trajectory of the curve (c1(τ), c2(τ), c4(τ)) for τ ∈ [100, 2800].
It is not clear from this simulation what kind of behaviour the trajectory has.

The non-stable amplitudes of the vibrations of the rig together with vortex
one observes in the phase diagrams presented above. Reducing the structural
damping coefficient ζs associated with the structural damping of the rig, leads
the dynamic system to the non stationary vibrations with amplitudes depending
on the slowly time τ .

6. Subharmonic Resonance 1/2

Now let us consider a numerical solutions of the system of the first approxima-
tions when a subharmonic resonance condition is taking place in the system.
The damping parameter of the rig ζs is taken very close to the same damping
parameter as when the main resonance condition occurs in the dynamic system.

solNumerical =solNumerical =solNumerical =
NDSolve[Join[system/.{ζs → .00071, a0 → 0.165, Ω0 → 1/2, α → 1.1, γ → 0.1,NDSolve[Join[system/.{ζs → .00071, a0 → 0.165, Ω0 → 1/2, α → 1.1, γ → 0.1,NDSolve[Join[system/.{ζs → .00071, a0 → 0.165, Ω0 → 1/2, α → 1.1, γ → 0.1,
B → .2, ε → 1}, {c1(0) == −1.06, c2(0) == −7.91, c3(0) == 0.0, c4(0) == .0}],B → .2, ε → 1}, {c1(0) == −1.06, c2(0) == −7.91, c3(0) == 0.0, c4(0) == .0}],B → .2, ε → 1}, {c1(0) == −1.06, c2(0) == −7.91, c3(0) == 0.0, c4(0) == .0}],
{c1(τ), c2(τ), c3(τ), c4(τ)}, {τ, 0, 2900}]//Flatten;{c1(τ), c2(τ), c3(τ), c4(τ)}, {τ, 0, 2900}]//Flatten;{c1(τ), c2(τ), c3(τ), c4(τ)}, {τ, 0, 2900}]//Flatten;

As in the previous part of the presentation, examples of the non stationary
motion of the specific point in the phase space are presented in the graphics in
figure 11 to figure 16.

The wave’s motion of the vortex is shown in figure 13 and in figure 14.

The graphics in figure 15 shows the trajectory of the curve (c1(τ), c2(τ), c4(τ))
for τ ∈ [100, 2800], and the graphics in figure 16 shows the trajectory of the
curve (c1(τ), c2(τ), c3(τ)) for τ ∈ [100, 2800]. Both shows periodic behaviour.
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Figure 8: The wave’s motion of the vortex. Quasiperiodic motion of c3(τ ). Here

ζs = 0.001 and Ω0 = 1.001. Here a0 = 0.1, α = 1.1, γ = 0.1, B = 0.2 and ǫ = 1. The

plot on the left shows the component c3(τ ) as a function of time, on the right, the

phasespace of (c3, c
′

3).

500 1000 1500 2000 2500
Τ

-1.5

-1.0

-0.5

0.5

c4HΤL

-1.5 -1.0 -0.5 0.5
c4HΤL

-0.03

-0.02

-0.01

0.01

0.02

c4’HΤL

Figure 9: The wave’s motion of the vortex. Quasiperiodic motion of c4(τ ). Here

ζs = 0.001 and Ω0 = 1.001. Here a0 = 0.1, α = 1.1, γ = 0.1, B = 0.2 and ǫ = 1. The

plot on the left shows the component c4(τ ) as a function of time, on the right, the

phasespace of (c4, c
′

4).
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Figure 10: The trajectory of the projection of a curve in 4-space to 3-space,

π1,2,4c(τ ) = (c1(τ ), c2(τ ), c4(τ )) for τ ∈ [10, 2800] for ζs = 0.0191 and Ω0 = 1.001.

Here a0 = 0.1, α = 1.1, γ = 0.1, B = 0.2 and ǫ = 1. Since each componentfunction is

quasiperiodic, the structure of the trajectory of τ → c(τ ) is more complicated.
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Figure 11: Stable motion of c1(τ ) to a periodic motion. Here ζs = 0.00071 and

Ω0 = 0.5. Here a0 = 0.165, α = 1.1, γ = 0.1, B = 0.2 and ǫ = 1. The plot on the

left shows the component c1(τ ) as a function of time, on the right, the phasespace of

(c1, c
′

1).
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Figure 12: Stable motion of c2(τ ) to a periodic motion. Here ζs = 0.00071 and

Ω0 = 0.5. Here a0 = 0.165, α = 1.1, γ = 0.1, B = 0.2 and ǫ = 1. The plot on the

left shows the component c2(τ ) as a function of time, on the right, the phasespace of

(c2, c
′

2).
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Figure 13: The wave’s motion of the vortex. Stable motion of c3(τ ) to a periodic

motion. Here ζs = 0.00071 and Ω0 = 0.5. Here a0 = 0.165, α = 1.1, γ = 0.1, B = 0.2

and ǫ = 1. The plot on the left shows the component c3(τ ) as a function of time, on

the right, the phasespace of (c3, c
′

3).
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Figure 14: The wave’s motion of the vortex. Stable motion of c4(τ ) to a periodic

motion. Here ζs = 0.00071 and Ω0 = 0.5. Here a0 = 0.165, α = 1.1, γ = 0.1, B = 0.2

and ǫ = 1. The plot on the left shows the component c4(τ ) as a function of time, on

the right, the phasespace of (c4, c
′

4).
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Figure 15: The trajectory of the projection of a curve in 4-space to 3-space,

π1,2,4c(τ ) = (c1(τ ), c2(τ ), c4(τ )) for τ ∈ [100, 2800] for ζs = 0.00071 and Ω0 = 0.5.

Here a0 = 0.165, α = 1.1, γ = 0.1, B = 0.2 and ǫ = 1. The tracjectory seems to

approach a periodic orbit.
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Figure 16: Another projection of the curve τ ← c(τ ) as in figure 15. The trajectory

of the projection of a curve in 4-space to 3-space, π1,2,3c(τ ) = (c1(τ ), c2(τ ), c3(τ )) for

τ ∈ [100, 2800] for ζs = 0.00071 and Ω0 = 0.5. Here a0 = 0.165, α = 1.1, γ = 0.1,

B = 0.2 and ǫ = 1. The tracjectory seems to approach a periodic orbit.

Like the results obtained in part 2 the same non-stable amplitudes of the
vibrations of the rig are observed at the phase diagrams presented above which
deal with a subharmonic resonance in the system.

7. Subharmonic Resonance 1/3. Stability Motion

At least let us consider a numerical solutions of the system of the first approxi-
mations when a subharmonic resonance order 1/3 condition is taking place in
the system.

The damping parameter of the rig ζs is taken very close to the same damping
parameter as in the system when time depending amplitudes are resulting from
the simulation of the ODE of the first approximation in the main resonance
condition.

solNumerical =solNumerical =solNumerical =
NDSolve[Join[system/.{ζs → .000109, a0 → .1, Ω0 → 1/3 + 0.001, α → 1.1,NDSolve[Join[system/.{ζs → .000109, a0 → .1, Ω0 → 1/3 + 0.001, α → 1.1,NDSolve[Join[system/.{ζs → .000109, a0 → .1, Ω0 → 1/3 + 0.001, α → 1.1,
γ → .1, B → 1.2, ε → 1}, {c1[0]==0.478, c4[0]==0.0559, c2[0]==1.313,γ → .1, B → 1.2, ε → 1}, {c1[0]==0.478, c4[0]==0.0559, c2[0]==1.313,γ → .1, B → 1.2, ε → 1}, {c1[0]==0.478, c4[0]==0.0559, c2[0]==1.313,
c3[0]==0.22}], {c1(τ), c2(τ), c3(τ), c4(τ)}, {τ, 0, 2900}]//Flatten;c3[0]==0.22}], {c1(τ), c2(τ), c3(τ), c4(τ)}, {τ, 0, 2900}]//Flatten;c3[0]==0.22}], {c1(τ), c2(τ), c3(τ), c4(τ)}, {τ, 0, 2900}]//Flatten;

Unlike to the previous results of simulations a stationary motion of the spe-
cific point in the phase space are presented in figures 17 to figure 20 below.

The wave’s motion of the vortex is shown in figure 19 and figure 20.

Hence the dynamic behavior of the system depends on the type of resonance is
taken place in the system.
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Figure 17: A stationary motion of c1(τ ) at the 1/3 subharmonic resonance. Here

ζs = 0.000109 and Ω0 = 1/3 + 0.001. Here a0 = 0.1, α = 1.1, γ = 0.1, B = 1.2 and

ǫ = 1. The plot on the left shows the component c1(τ ) as a function of time, on the

right, the phasespace of (c1, c
′

1).
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Figure 18: A stationary motion of c2(τ ) at the 1/3 subharmonic resonance. Here

ζs = 0.000109 and Ω0 = 1/3 + 0.001. Here a0 = 0.1, α = 1.1, γ = 0.1, B = 1.2 and

ǫ = 1. The plot on the left shows the component c2(τ ) as a function of time, on the

right, the phasespace of (c2, c
′

2).

SIMS 49

www.scansims.org Proceedings of SIMS 2008
Oslo, Norway, October 7-8, 2008

217



Non-Linear Wave-Oscillator Models for Transverse Vibrations 23

500 1000 1500 2000 2500
Τ

1.0

1.5

2.0

2.5

3.0

3.5

4.0

c3HΤL

1.0 1.5 2.0 2.5 3.0 3.5
c3HΤL

0.05

0.10

0.15

c3’HΤL

Figure 19: The wave’s motion of the vortex. A stationary motion of c3(τ ) at the 1/3

subharmonic resonance. Here ζs = 0.000109 and Ω0 = 1/3 + 0.001. Here a0 = 0.1,

α = 1.1, γ = 0.1, B = 1.2 and ǫ = 1. The plot on the left shows the component c3(τ )

as a function of time, on the right, the phasespace of (c3, c
′

3).
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Figure 20: The wave’s motion of the vortex. A stationary motion of c4(τ ) at the 1/3

subharmonic resonance. Here ζs = 0.000109 and Ω0 = 1/3 + 0.001. Here a0 = 0.1,

α = 1.1, γ = 0.1, B = 1.2 and ǫ = 1. The plot on the left shows the component c4(τ )

as a function of time, on the right, the phasespace of (c4, c
′

4).
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Conclusion

The solutions in the time-resolution domain and in the phase-space domain of a
two degree of freedom non-linear vibratory system in the notebook are developed
by the well-known averaging method using the Mathematica symbolic procedure
of evaluations.

The phenomenon of resonance instability of the non-linear vibrations of the
model of the offshore structure proposed by Sarpkaya and Issacsson [SI81] is
obtained and studied in the present paper.

Resonance instability (here it means unregulated time-dependence of the am-
plitudes of vibrations of the offshore structure) of the offshore structure mainly
depends on the type of resonance in the system (main or subharmonic) and on
the property of the structural damping of the rig.
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