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Abstract.  We discuss a hybrid approach for causal analysis 

of disturbances in industrial process operation. It represents a 
combination of OOBN with first level diagnostic packages and 
physical models serving as agents in the system design and 
providing evidence for automated reasoning on abnormality in 
process operation.  The aim is causal analysis of non-measurable 
disturbances as a decision advice complement to the distributed 
control system (DCS). The approach includes prediction of signals' 
level-trend development, risk assessment for disturbance analysis 
and predictive maintenance on demand. The methodology has 
been applied on a screening process with a pressure-flow network 
in a Pulp Mil. 

1. Introduction1 

Industrial systems grow in their complexity. A 
sophisticated industrial process can generate output from 
hundreds or thousands of sensors, which should be 
monitored continuously. In the case of deviations from 
normal process conditions, the relevant information should 
be singled out, the cause of the failure should be found and 
appropriate corrective actions should be taken. 

The sheer amount of data and the continuity of the 
process ask for a high level of automation of operation and 
maintenance control. But not all operations can be 
completely automated. Often it is necessary to let a human 
operator steer the process in critical situations. This poses a 
formidable challenge on the concentration and capability of 
the human being and on the efficiency of his decisions.  

To support the operator in the task of disturbance 
analysis, an adaptive system for Root Cause Analysis 
(RCA) and Decision Support (DS) will collect the data from 
the sensors and transfer it into structured and relevant 
information. Simultaneously, the process overview should 
be maintained and relevant explanations provided with an 
advice on corrective sequence of actions. Then the operator 
can make educated decisions, based both on both artificial 
intelligence and human experience. This should help avoid 
unplanned production interruption or at least ensure that the 
lost production is minimal.  

                                                           
1 This work was performed, while G.Weidl was associated with 

ABB Corporate Research and E.Dahlquist with ABB Process 
Industries, both in Västerås, Sweden 

 

If only a classification of the failure type is required, 
neural networks or statistical classifiers may be more 
adequate. However, if decision support is needed, Bayesian 
networks (BN) for probabilistic reasoning in intelligent 
systems [1], [2], [3] can be used to calculate the posterior 
probabilities and have the ability to adapt to changes [4]. 

Troubleshooting based on decision theory was first 
proposed in [5], and further analyzed in [6]. In a pre-study, 
we have also considered neuro-fuzzy hybrid systems as an 
alternative approach [7]. The neuro-fuzzy approach would 
not provide causal interpretation of diagnostic conclusions, 
which was one of the main system requirements for 
explanatory decision support on demand or continuously. 
Models reusability, simple construction and modification of 
generic BN-fragments were other selection criteria in favor 
of object oriented BN (OOBN) [8].  

1.1. A Bayesian Networks Approach to Causal Modeling 
of a Domain 

A Bayesian network (BN) is a model of a domain 
containing uncertainty. For industrial processes, the 
uncertainty can be originating from the incomplete 
understanding of the complexity of the domain, from 
occurrence of stochastic events leading to randomness in the 
process behaviour, from the process condition at the time a 
given control or maintenance actions is to be performed, or 
a combination of these.  

A Bayesian network is a set of child and parents nodes 
representing random variables and a set of links connecting 
these nodes to build a directed acyclic graph (DAG) [3, 14]. 
DAG expresses the absence of directed path(s) starting and 
ending at the same node. The nodes correspond one-to-one 
with the domain variables of the probability distributions 
such that there is one conditional probability distribution 
(CPD) function for each child node given its parents. The 
CPD expresses the strengths of the (causal) dependency 
relations of the child node from its parent's configurations 
of states. Bayesian networks are also called belief networks, 
Bayesian belief networks or causal probabilistic networks.  

 

The generic mechanism of disturbance (or failure) build 
up consists of root cause activation, which causes abnormal 
changes in the process conditions. The last represent effects 
or symptoms of abnormality. They are registered by sensors 
or soft sensors. If not identified and corrected, these 
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abnormal conditions can enable events causing an observed 
failure. A causal representation of the above factors gives 
the following chain of events and transitions, which is of 
interest for RCA under uncertainty and for the purpose of 
decision support on corrective actions, as shown in Fig. 1, 
column 1.  

The BN model for Root Cause Analysis reflects the 
causal chain of dependency relations as shown in Fig. 1. 
The dependency relations are between the three symbolic 
layers of random variables in the problem domain, i.e.  

 
(1)  {Hi} , {Sj } , {F}, where i = 1... n,  j = 1 … m  
      

 

Fig. 1. The conceptual layers of the BN for RCA (column 1) 
and the corresponding variables in each layer of the BN 

In (1), the set of root causes {Hi} contains all possible 
failure sources or conditions, which can enable different 
events Sj, which precede a failure F or its confirming events 
Sck.  The set of variables {Sj} contain also early abnormality 
effects and symptoms, which are observed, measured by 
sensors or computed by simple statistical or physical models 
(e.g. mass and energy balances). The three sets of variables 
{Hi}, {Sj }, {F},  can be viewed as three conceptual BN 
layers (i.e. root cause → effect → failure), see Fig. 1. 

An Object-Oriented Bayesian Network (OOBN) is a 
network that, in addition to the usual nodes, contains 
instance nodes. An instance node is a node representing an 
instance of another sub-BN, which can itself contain 
instance nodes, whereby an object-oriented network can be 
viewed as a hierarchical description (or model) of a problem 
domain. 

The use of OOBN for facilitating the construction of 
large and complex domains, and simple modification of BN 
fragments was discussed in 8. 

We use this idea to model industrial systems and 
processes, which often are composed of collections of 
identical or almost identical components. Models of systems 
often contain repetitive pattern structures (e.g. models of 
sensors, actuators, process assets). In Bayesian networks, 
such patterns are network fragments, modelled as sub-BN. 
In particular, we use OOBN to model all (DCS and 
computed) signals uncertainties and signals level-trend 
classifications as small standardized sub-OOBN or 
fragments within the OOBN of the problem domain.  

We also use OOBN for top-down RCA of industrial 
systems, which allows different levels of modeling 
abstraction in the plant and process hierarchy. A repeated 
change of hierarchy is needed partly due to the fact that 
process engineers, operators and maintenance crew discuss 
systems in terms of process hierarchies and partly due to 
mental overload with details of a complex system in 
simultaneous causal analysis of disturbances. It also proves 
to be useful for explanation and visualization of analysis 
conclusions, as well as to gain confidence in the suggested 
sequence of actions. 

In this work, we have used the Hugin software [13] ,]14], 
which supports the construction of hierarchical network 
structures. A fully object-oriented paradigm for 
constructing Bayesian networks should also include the 
notions of subclasses and inheritance, as known from 
object-oriented programming languages.   

1.2. An overview of causal and non-causal object 
oriented modelling languages  

In general, the object-oriented (OO) constructs 
incorporate encapsulation, inheritance and hierarchy. Its 
common purpose is efficient modelling and simulation, 
providing a convenient language for reuse and exchange of 
models. 

Examples of non-causal object-oriented languages for 
modelling of physical and chemical systems and processes 
include: Modelica, gPROMS, ASCEND, NMF/IDA, 
Omola, etc. As compared to the known simulation 
languages, these object-oriented languages offer several 
advances: 1) non-causal modelling based on differential and 
algebraic equations, describing the physics of the domain, 
provided it is well understood; 2) multi-physics domain 
modelling within the same application model, incorporating 
a combination of electrical, mechanical, thermodynamic, 
hydraulic etc. sub-models; 3) a general type system that 
unifies object-orientation, multiple inheritance, and 
templates within a single class construct [20].  

Thus, the main difference is in the causal probabilistic 
handling of uncertainties in our OOBN approach (exploiting 
hybrid information obtained from both measured and 
calculated variables from physical models), while the above 
mentioned OO languages are using non-causal modelling, 
based on differential and algebraic equations of the problem 
domain. On the other hand, we use a hybrid approach, 
which is a combination of OOBN with first level statistical 
diagnostic packages and physical models (e.g. pressure-flow 
nets) serving as agents in the system design and providing 
evidence for automated reasoning on abnormality in process 
operation.   

1.3. The OOBN approach and contribution overview 

The main advantage due to the Bayesian approach is 
much faster operator guidance, without limiting the failure 
analysis to only one possible root cause. Instead, a list of 
root causes ranked after probabilities will give quick and 
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flexible decision support to the operator with explanation 
facility based on causality.  

We have previously developed a number of generic sub-
OOBN for signals classification, process performance 
monitoring and diagnosis [9-12].  

With this work, we present an application of a combined 
methodology for root cause analysis and decision support. 
The main contributions of this work include:  
• The use of OOBN for RCA & DS in process operation 

to ensure causal modeling of interdependency of events; 
to ease the construction,  reusability and modification of 
BN; to reduce the overall complexity of the network; to 
provide explanations with overview at different levels of 
industrial plant hierarchy 

• The development of OOBN model for adaptive signal 
classification by mixture models and prediction of the 
development of signals' level-trend. 

• The system design for Root Cause Analysis (RCA) & 
Decision Support (DS), incorporating the agents for 
handling of uncertainties and reflecting the information 
flow  

• The development of pressure-flow network as physical 
(non-causal) model of the screening process. It provides 
soft sensor (non-measurable) information for evidence 
in the reasoning under uncertainties  

• Risk assessment of disturbances, estimation of their 
most probable root causes for predictive maintenance on 
demand. 

The most efficient sequence of corrective actions is 
obtained from a probability-cost function. The cost is 
represented by the expected average cost of corrective 
(process and asset management) actions. We demonstrate 
the application on a pulp screening process. 

2. Statement of the Problem 

Disturbance analysis (RCA and DS) in industrial process 
control could be a time-consuming task leading to big 
production losses. The overall goal of RCA and DS is to 
extract from DCS-data volumes the necessary information 
for early assessment of abnormalities and provide efficient 
troubleshooting advice in process operation and for 
maintenance on demand.    

The following issues are treated in this paper. The 
disturbance analysis system should provide reliable 
handling of uncertainties in acquisition of knowledge and 
data, including both discrete and continuous signals. The 
signal classification should be adaptive to changes in 
process operation mode and account for both normal and 
abnormal/faulty operation conditions. Prediction of the 
level-trend development should ensure early risk assessment 
and warning on abnormality in order to be able to propose 
early treatment using efficient sequences of actions. 
Therefore for predictive maintenance on demand, the cost 
estimations should also anticipate the potential production 
losses. 

The system performance should adapt to natural process 
changes and allow user interaction. An operator steering a 
complex process will prefer a transparent decision support 
system to a black box system. If the system explains the 
underlying mechanism for its conclusions and suggestions, 
the operator can compare these with his experience and take 
the needed corrective actions with confidence. 

2.1. Conditions for a process or device 

Conditions are the process states at a particular time. 
Conditions are used to determine whether a plant-wide 
disturbance analysis should run or not. Process condition is 
a condition that depends on the state of a production 
process. The state is affected by external factors.  An 
abnormal condition is a condition caused by disturbances 
that prevent the process parameters to stay within control 
limits that define the range of normal process operation. It 
causes degradation of targeted process performance, 
resulting in the inability to deliver a pre-specified state of 
output. A critical condition is a condition that causes failure 
to meet targets, unexpected process destructive effects or 
dangerous consequences. It requires urgent corrective 
actions. 

2.1. Interaction of Condition Monitoring, RCA and DS 

RCA is a structured procedure, which guides the failure 
analyst from the disturbance or failure event to its cause(s). 
In standard process control the deviation of a single 
parameter outside its normal range will trigger an alarm. To 
prevent a large number of false alarms, the thresholds of the 
variables should not be chosen too sensitive. But this 
approach will indicate failures only late at an advanced 
stage. 

Process condition monitoring interacting with RCA will 
use more sensitive thresholds. The large number of 
triggered “alarms” is first analyzed internally by the RCA 
system. Only if the change of some variables in context 
with the behavior of all other process parameters suggests 
the development of a failure, the operator is informed and 
advised on actions. 

3. Methodology Used 

The task of failure identification during production 
breakdown, its isolation and elimination is a troubleshooting 
task. While the task of detecting early abnormality is a task 
for adaptive operation with predictive RCA and 
maintenance on demand. Therefore, these two tasks have 
different probability-cost functions as discussed in [11]. We 
combine both tasks under the notion of asset management. 
It aims at predicting both process disturbances and 
unplanned production stops, and to minimize production 
losses. Thus, the priority is set to determine an efficient 
sequence of actions, which will ensure the minimal 
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production losses and will maximize the company profit. To 
provide a solution to troubleshooting and maintenance on 
demand, an extended methodology is suggested, able to:  
 
1. detect a failure at an early abnormality stage with a 

reduced number of hardware sensors 
2. find the most likely causes of abnormality 
3. propose an efficient sequence of corrective actions and 

observations 
  

For any abnormal case, once identified, the system is 
searching to find the root cause of observed or predicted 
disturbance. The basic algorithm of RCA, as implemented 
in this application, is a modification of the decision-
theoretic troubleshooting algorithm, where costs are 
assumed to be order independent to ensure an optimal 
sequence of actions [6]. We have used the estimated 
average cost, as described in [18] and [19]. Moreover, we 
have extended this methodology to pro-active solutions with 
early treatment of abnormality in order to avoid potential 
losses of production [19].  

3.1. Handling of Uncertainties 

The necessary data to determine the condition of a process 
and its devices is provided by DCS-signals, alarms, event 
lists, equipment data, maintenance reports, and a number of 
first level diagnostic packages (Fig. 2). 

3.1.1. Agents for Handling of Uncertainties 
 
First level asset diagnostic packages serve as agents in the 
system architecture. These include diagnostics of small 
asset units, e.g. sensors, actuators, control loops, soft 
sensors, see Fig. 2.  
 

They provide information on the degree of reliability of 
sensors readings (by data reconciliation), sensor status (by 
sensor diagnosis), calculated signal-trends (by trend 
diagnosis), actuators and other process assets conditions. 
This reduces the degree of uncertainty in the acquired 
evidence. Asset is used here as a collective notion to include 
actuators (valves, pumps), other process assets (e.g. digester 
screens; pipes, can be represented as fake valves) and in 
general, even equipment failures as a root cause of signal 
deviations. More details on the system architecture are 
given in [10]. 
In Fig. 2, the Dynamic Data Reconciliation Agent is 
utilizing simulations from a Pressure-Flow Network, which 
we describe in the following sub-section.  

 
 

3.1.2. Fluid dynamics models and uncertainties in 
knowledge acquisition 
 

 

The idea is to use the simulations provided by a fluid 
dynamic model (e.g. pressure-flow net) as soft sensors’ 
evidence from thereof computed (non-measurable) process 
variables. A pressure-flow model can provide for example 
estimates on some parent configurations in the BN. There 
are several sources of uncertainties in this physical model 
estimation, since modeling inputs for the actual valve 
openings might be different than the ones indicated by DCS 
measurements. Moreover, the state of the screening plate 
(normal, clogged, hole or cracks) will still represent 
uncertainty of the outcome of such estimations. This is 
because clusters of small particles or long fibers in the pulp 
flow can clog part of the plate screening area, which is not 
directly considered in the flow dynamics model. One can 
also model this effect in the fluid dynamics simulations by a 
function expressing the gradual reduction of a plate 
screening area. 

 

 
 

Fig. 2. System Design with Information Flow for Root Cause Analysis and Decision Support under Uncertainties 
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Fig. 3. Pressure-flow network of pulp screening process 

with screens in different process sections and series connection 
of screens 

A pressure-flow model (see Fig. 3) can be used to specify 
mathematical expression of the relation between a node 
(flow_accept or flow_reject) and its parents. Two types of 
equations can be used to build the pressure-flow equation 
system of the screening process: 
• Mass conservation equations for all flow splitting-

points 
(2)    Σ In_flow = Σ Out_flow 
 

which for the screen becomes 
 

flow_inject +  flush_flow = flow_accept + flow_reject 
 

• Pressure drop equations at all pressure changing 
components of the network. Three types of pressure 
changing components  ∆(Pressure_at_component) are 
considered: pumps, valves and screening plate 

 

Pressure_after=Pressure_before+∆(Pressure_at_component) 
 

The pressure change due to a pump is given as: 
 

(3)   ∆p_pump = dp0 – [ (dp0 – dpn)*q2 /qn
2  ] 

 

where  dp0 , dpn , qn are the dimensioning parameters of the 
pump, i.e. dp0 - the  pressure at flow q=0 through the pump;  
dpn the  pressure at normal flow q= qn = [N kg/h]. 

The pressure change due to a valve is given as: 
 

(4)    ∆p_valve = ρ*q2  /( a2 v2) 
 

where q is the flow, ρ  is the density of pulp, a is the 
admittance factor and v is the valve opening in % units. Due 
to non-measurable process disturbances, the parameters ρ, a 
and v incorporate uncertainties in the expressions for 
∆p_accept_valve, ∆p_reject_valve and ∆p_screen_plate. 

Usually, the pulp flow concentration (density) 
measurements are unreliable. The building and dynamics of 
fibers and clusters in the pulp flow are not modeled by 
physical models, or even if modeled - not calculated on-line 
since they are computation time expensive. The active 
screening area in relation to the clogged plate surface is 
difficult to estimate. The flow of accepted pulp consistency 
can be reduced due to many other factors, besides screen 

plate clogging. Uncertainty in measurements is one of the 
motivations for adaptation.  

Uncertainty in computed pressure-flow balance is 
another argument for adaptation. The pressure-flow 
equation system build from (2), (3), (4) can be expressed as: 
f(x) = 0, where the vector x ={q, p} is its solution with 
components q ={ q1, q2, …, qn} for the flow and  p={ p1, p2, …, 

pm } for the pressure. 
We use the Newton’s iteration method to find the 

solution  x={ p, q} of the pressure-flow equation system, as 
follows: 
 

(5)   xk = xk-1 –J –1 ( x k-1) f(xk-1),    k = 1, 2, 3, … 
 

where the Jacobian of the system is given by  
 

J( x) = {∂fi(x)/∂ xi}. 
 

At  k = 1, xk-1 = x0 is the initial guess of the iteration 
procedure. Since the Newton’s iteration method represents 
tangential search, as closer is the initial guess to the real 
solution, as bigger is the chance to find the correct pressure-
flow net configuration and thus keep the system control in 
balance. 

The above provides good motivation for using 
adaptation. The Newton iteration provide good 
mathematical model as estimates on x = {q, p}. The 
pressure-flow balance should hold at each time step and is 
computed in quasi-stationary regime (by use of the general 
purpose software Maple), since there is a possibility to 
change at each time step the initial flow entering the system 
by taking into account process input changes. The 
adaptation will then compensate the classification of those 
states of the system, which the models do not fully capture, 
since the domain changes over time. 

A fluid dynamics model gives a correlation between 
flows and pressure drops. In many modern valves it is 
custom to include measurements of pressure before and 
after the valve opening, as well as the position of the ball or 
slider in the valve. This gives a great chance to make flow 
measurements as well as pressure measurements all over 
modern plants in the future, when advanced busses like 
profibus and field bus foundation and other s are being used 
more extensively. This will give better information on the 
process performance as well as the performance of the 
valves, all flow meters and other types of sensors. Today 
this information is just measured locally in the valves, but in 
the future they will be registered also in the process 
computers and process data bases. 

 
 

Pro- and contras in knowledge acquisition 
 

Physical simulations models (like fluid dynamics, or 
intergated fluid dynamic models with built in control 
strategies) are more rigorous, although time consuming and 
sometimes unsuitable for on-line use. In this respect, the 
knowledge of process physics can be used with advantage 
for causal probabilistic (BN) modeling and exploited (time 
efficiently) on-line. In cases, where the underlying physics 
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of the problem domain is not well understood, the only 
alternative left is to use simplifying assumptions in BN as 
described in [3] and [10].  

3.1.3. Continuous Distributions on Soft Range of States 
 

The system is receiving as evidence both discrete and 
continuous signals. The event lists contain only Boolean 
variables. The variation range of continuous signals (DCS-
measured or thereof computed signals (e.g. from physical 
models)) are also discretized into a number of soft numeric 
intervals, represented as states of a BN node. We use 
discretization and not continuous nodes explicitly, since we 
want to capture both the continuous variation of the signal 
during normal process operation, as well as its non-
continuous disturbances (or discrete faulty deviations 
outside normal variations). This is realized by use of 
mixture models [15], [16].  

Let S be a continuous variable. Assume that S can be 
partitioned into sets s1 … sn such that the probability density 
function P(S) can be approximated by a finite sum over its n 
soft interval states s i  

 
(6)   P(S) = Σi=1..n P(s i) P(S|si) 
 

i.e. P(S) is partitioned into n sub-CPD P(S|si), each with 
probability P(s i) as a root cause of S. Gaussian mixtures are 
used most commonly as sub-CPD, since they allow to 
approximate any other probability distribution. 

The sub-distribution of each soft interval state is chosen 
as a localized function with one peak and it is decreasing 
monotonically with the distance from the peak. Gaussian 
mixtures are used most commonly, since they allow to 
approximate any other probability distribution. We also use 
Gaussian distribution on selected soft interval states to 
represent the most characteristic values of a continuous 
signal during normal and faulty operation. 

3.2. Generic OOBN Models 

3.2.1. Adaptive Signal Classification 

The process is usually operated at several normal operation 
modes dependent on production rate, process load, etc. 
During standard operation modes, the variations of process 
variables are inside their boarders allowed from process 
control. Faulty change of operation mode, faulty process 
operation, as well as asset faults can be the root causes of 
abnormal process deviations. This can cause degradation of 
process output (e.g. quality, quantity) or failure in process 
assets, when exploited under improper conditions.   

Dependent on operation mode and set-points cp of 
parameters, the signal's level and trend have different 
normal and abnormal states, see the first slice (at time t0) of 
Fig. 4. Normal operation mode is characterized by a number 
of set-points and their typical signal variations under normal 
and abnormal process operation. From data analysis, we 

have found that certain failure events are enabled during 
process transition between consequent operation modes 
(e.g. mode change for increase of production rate). For such 
cases, it is necessary to use signal classification, which is 
adaptive to changes in normal process operation.      
The node sensor reading sr represents the continuously 
measured value of a process variable. The node sensor 
status ss represents the condition of the sensor instrument 
used to perform the measurement of a process variable. The 
node real value Rt represents the actual development of the 
process variable at time t. The node sensor diagnosis sd 
receives input on the sensor status from the sensor 
diagnostics agent. The sensor diagnostics conclusions are 
affected by the sensor status (true/false), while the real 
value can be restored by use of information from the 
dynamic data reconciliation agent (Fig. 2). 
 

 
Fig. 4. Prediction of classified DCS-signals, based on 

present and past values of process variable 

Suppose a DCS-signal S is discretized over soft interval 
states as given in (6). In cases of faulty operation or root 
causes originating in abnormal condition of process assets, 
the real value of a process variable is dependent on the set-
points of different operation modes and on the status of the 
asset As. Then, the conditional probability distribution 
(CPD) of the real value becomes a mixture of two Gaussian 
distributions around the set point during normal and 
abnormal process operation 

 
 

   Normal (cp, x±⋅σ),            As 
  P(Rt|cp ,As)=      Normal (µabn , xabn⋅σabn ),  o.w. 

      
For variables, which are directly manipulated in process 
control loops, the set point serves as mean µ in the Gaussian 
distribution with the respective scaled variance x±⋅σ  around 
the set-point of the operation mode. The variance is scaled 
by a factor x± in order to avoid too many “internal alarms” 
for RCA. For variables without set-point, but which 
covariate with controlled variables, we calculate the mean 
of the relation (real value/set point) or alternatively any 
physical or statistical function expressing their correlation. 
The dependence on the status of the asset is expressed with 
a Gaussian distribution, where µabn is the real alarm 
threshold and xabn⋅σabn  is the scaled variance which lower 
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variation limit provides more sensitive alarm threshold for 
early risk assessment of abnormality. Alternatively, for 
signals deviation, which is characterized by low frequency 
of failure events, we use a mixture of Gaussian distributions 
on normal operation behavior and Poisson distribution 
during faulty operation.      

It is obvious that if the measurement instrument is not 
properly functioning, then the real-value and the “sensor 
reading” need not be the same. Therefore, the sensor 
reading from any DCS-measurement is conditionally 
dependent on random changes in two variables: real value 
under measurement and sensor status of the instrument. Its 
probability distribution is expressed as a mixture of normal 
and uniform distributions for the real value when the sensor 
status is true or false respectively 

 

         Normal (Rt, x⋅σ),     ss 
P(sr|Rt ,ss)=     Uniform(ymin,y max),  o.w. 

 
where the uniform distribution is defined on the entire 
interval of signal variation. 

 
The signal trend at any time step is directly influenced by 
random changes in the real value at both previous and 
present time steps. For robustness, the trend is calculated as 
the derivative on the averaged time history of the signal 
sampled with a time step ∆t = ti – ti-1: 
  

(7)  trendsignal = ∆S/∆t = {µ(Rt (t0)) - µ(Rt (t-1)}/( t0 – t-1)    
  

where the mean µ(Rt (ti))  =Σj=(i – N )…i Rt (tj)/N  is  averaged 
between the time points ti-N  and  ti  (i=0 current time) over 
the real value Rt (ti) of a signal at time point ti. 

This provides a filter of the noise in the signal behavior. 
To model the degree of uncertainty in the signal trend, we 
use a diagnosis trend agent. In this case, we use the 
uncertainty (historically calculated) for each of the N 
historical points and base on this the diagnosis of the 
derivative variable. The considered pulp screening process 
has slow dynamics. Therefore, the trend is expressed by the 
derivative calculated over a floating interval window 
containing 20 points distributed uniformly on 10 minutes 
period.  

The signal class is conditionally dependent on random 
changes in two variables: signal level and signal trend. Its 
probability distribution is then defined to adapt the 
classification to changing operation mode.      

The generic BN model for adaptive signal classification 
into levels and trends (see the first time-slice of Fig. 4) is 
one of the generic building blocks in any RCA model of 
monitored industrial process with its equipment and asset 
components in every process section. Fig. 4 shows a past-
present-future combination of such generic blocks for the 
purpose of risk assessment and early warnings on 
abnormality (e.g. screen plate clogging).     

3.2.2. One Step Look Ahead Prediction of Signals 

The temporal Bayesian network models are used to predict 
the development of the signals and evaluate their risk of 
abnormal deviation due to disturbances. This signals' 
prediction is used as evidence in the RCA model. Therefore, 
the RCA can provide early warnings on root cause 
activation. In that case, the control system can examine with 
short disturbance (e.g. opening or closing of valve) whether 
the suggested root cause is the real one and if confirmed (by 
the operator) the necessary corrective action is undertaken 
at an early stage of failure development.      

In addition, temporal BNs can be used to express 
causality dependencies reflecting the dynamic character of 
the process. For example, alarm filtering deals mainly with 
time-delay effects. In Fig. 4 we use only three time steps to 
model an infinite step process. In the reality, such temporal 
network is a static network, since it represents a finite and 
fixed number of time slices and it can reason only with a 
finite series of observations coming from a dynamic process 
or system. For real time applications, it is desired to include 
in the model as many time slices as possible. The last can 
cause an inefficient and time consuming inference, since 
evidence propagation would involve all time slices although 
probability update is desired only for a limited number of 
time slices.      

A computation scheme, which can handle infinite series 
of observations in dynamic BN has been described in [17]. 
It changes dynamically the width of the time slice window, 
as well as the number of backward smoothing and 
forecasting time slices. Thus, it can provide flexible and 
selective inference. It also supports inclusion and 
modification of time-delayed observations. The forecasting 
of signal development and time-delays will be incorporated 
in the proposed RCA system in the near future. Another 
issue is concerned with suitable approximations for 
handling of large number of temporal relations between the 
different time slices. 

3.2.3. Early Warning Based on Risk Assessment: A Case 
Story on Pulp Screening 
 

The pulp is obtained as a result of cooking of wood-chips in 
a digester. The screening of pulp is a filtering process. In 
order to predict the condition of the screening process and 
to demonstrate the concept, we have selected a 
characteristic group of process random variables: S1 is the 
differential pressure signal; S2, S3 are the flows on accept 
and reject side, S4 is the consumed power by the equipment 
during screening process operation. As noted for the signal 
classification model, the different production rates during 
normal screening operation are represented each by one 
specific combination of process variables. All deviations 
from operation mode-set combinations are symptoms of 
expected abnormality in the process or its equipment.     
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Fig. 5. Assessment of Abnormality Risk and 
Equipment/Sub-process Condition 

Instead of reactive troubleshooting, a long term strategy 
requires a proactive system with early warnings and 
corrective (control or maintenance) actions, which prevent 
abnormality to develop into a failure. For this purpose, we 
combine in the BN model (Fig. 5) the predicted signal class 
outputs as intermediate variables for risk assessment.  

 

This is based on certain combination of random variables 
(e.g. signals S1-S4 in our screening application). The 
pressure-flow combinations of S1, S2, S3 are responsible 
for a number of mutually exclusive states of the event node 
enable Event, while S4 can be the cause of Event2, which 
dependents on stochastic circumstances might occur 
simultaneously, but not always independently of Event1. 
When abnormality event is enabled, a corrective action 
from the operator/maintenance or DCS can prevent (or 
allow) undesired event (failure), leading to abnormal or 
critical condition of the equipment or a sub-process (Fig. 5).     

By analogy, we build the OOBN models at higher plant 
hierarchy levels (e.g. process diagnosis, control and 
performance management levels). 

3.4. Explanation and Adaptation 

Based on the causal character of the OOBN models, the 
operator can feed his own educated observations into the 
inference system, which then evaluates alternative actions 
with respect to their technical and economical impact.     

A user explanation interface should include a ranked list 
of most probable root causes (see Fig. 6), a list of evidence 
(symptoms) for inference, as well as conclusions on 
possible effects. Moreover, one can examine the 
dependency on evidence through the sensor status and 
update the RCA conclusions. The independence relations 
induced by a set of nodes in a directed acyclic graph (DAG) 
are determined using the d-separation criterion [1]. In case 
there is more than one path between the root cause and the 
failure, the entropy is calculated for each of the connecting 
paths and compared before the propagation of evidence and 
after it. Then, the path with the highest entropy is presented 

to the operator in order to explain the conclusions. For large 
BNs, additional properties, as coloring of the most probable 
scenario of causes and effects allow visualization of the 
explanations.   

 

 
Fig. 6.  GUI-functionality for presentation of RCA-results 

and collection of user feedback 

In any real process application, RCA needs adaptation to 
incorporate the ongoing changes in process behavior. A 
suitable adaptation algorithm is the sequential learning with 
fading [4]. The fading is a convenient feature after 
maintenance activity on the plant. The sequential learning is 
performed on the actual root cause nodes and corresponding 
evidence for that particularly observed case. This is based 
on feedback from DCS and on operator/maintenance 
reports, see Fig. 6. 

The object oriented BN framework fits very naturally 
into any industrial IT environment, which utilizes object 
oriented integration of applications as containers of 
different applications communicating via the aspect 
integration platform in order to allow overall process 
optimization. 

 

4. Conclusions        

The outlined application has been a subject for feasibility 
study of our methodology in pulp process operation. It 
could be generally applicable in process industries. A 
methodology for systematic (and automated) system testing 
still needs to be developed, in order to ensure efficient 
system development, especially when applications grow in 
size. 

The experience shows, that simple updates of typical 
repetitive structures (e.g. sensors) in a BN may turn into 
annoying and time-consuming task. Instead, we have used 
OOBN with advantage for RCA & DS in process operation, 
i.e. OOBN ensure causal modeling of interdependency of 
events, simplifies modification and reusability of BN. 
The use of OOBN has simplified the development of the 
model for adaptive signal classification and prediction of 
the development of signals' level-trend. Moreover, the 
overall RCA-model complexity has been reduced at 
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different levels of industrial plant hierarchy. This provides 
an overview for explanations of RCA-conclusions. In 
addition, this OOBN are used in a next level OOBN for risk 
assessment of disturbances and estimation of their most 
probable root causes for predictive maintenance on demand. 

The proposed system design for Root Cause Analysis 
(RCA) & Decision Support (DS) is incorporating agents for 
handling of uncertainties. We have developed one particular 
agent, based on fluid dynamics modeling. This is solving an 
equation system for the pressure-flow network. It provides 
soft sensor (non-measurable) information for evidence in 
the reasoning under uncertainties.  

This allows us to estimate the risk of abnormality at an 
early stage and to propose early treatment by an efficient 
sequence of actions. The last is utilizing cost estimations 
anticipating also potential production losses. This allows 
efficient troubleshooting and predictive maintenance on 
demand [19].  

This application demonstrates that fast and flexible 
disturbance analysis (RCA and DS) is feasible in industrial 
process control. It need not be a time-consuming task, if a 
computerized troubleshooting system is deployed. Thus, it 
can reduce substantially the production losses due to 
unplanned process breakdowns.   
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