
Automatic Dimensional Consistency Checking for
Simulation Specifications

Mikael Sandberg
Mälardalen University

Västerås, Sweden

mikael.sandberg@mdh.se

Daniel Persson
Mälardalen University

Västerås, Sweden

dpn99004@idt.mdh.se

Björn Lisper
Mälardalen University

Västerås, Sweden

bjorn.lisper@mdh.se

ABSTRACT
Simulation specification languages usually have support for
units or dimensions, but seldom use it for more then present-
ing simulation results. We will show that this annotation can
be used to analyze the specifications and as a result elim-
inate dimensional errors in the specification equations and
expressions.

We use well known theories on dimensions and type sys-
tems to achieve a sound and complete analysis method. We
also extend known analysis methods and thereby the set of
constructs that can be analyzed. The algorithms we have
developed are general and can be implemented for a wide
variety of simulation languages.

In this paper we present a prototype implementation of our
dimensional consistency analysis method for a widely used
simulation language, gPROMS. The prototype is able to an-
alyze the dimensional consistency as well as to infer miss-
ing dimensions in simulation specifications for gPROMS.
Furthermore, our tool can suggest to the simulationists,
if needed, what parameters/variables should be annotated
with dimensions to make all dimensions uniquely determined
by the tool.

1. INTRODUCTION
We have developed a method to validate the dimensional
correctness of simulation specifications in languages such
as Modelica [6] and gPROMS [14]. Such languages specify
models by differential algebraic equations in a structured or
object-oriented paradigm.

Some simulation modelling languages have support for di-
mensional properties by enabling the simulationists to spec-
ify units for simulation output, but this information is sel-
dom used for more than displaying units in graphs and ta-
bles. We are trying to show that a Dimensional Inference
(DI) system will greatly enhance the usability of such lan-
guages and help produce models that are dimensionally con-
sistent and thus more likely to be correct in general.

Dimensions (e.g length, mass and force) are used to vali-
date equations in physics and other scientific domains. If
an equation cannot be validated with respect to its dimen-
sional correctness, it is most likely not correct in any aspect.
Thus, validating dimensions can catch design errors early in
the modelling process.

We exploit this analysis method, called Dimensional Anal-
ysis (DA), by automating it and combining it with type in-
ference, see Section 1.2. The strength of the two combined
methods make up an appealing analysis method that we like
to call Dimensional Inference.

The automation of the analysis method enables us to val-
idate whole specifications and guarantee their dimensional
correctness before any simulation is performed. We believe
that our analysis method greatly increases the quality of
the models by ensuring dimensional consistency. The qual-
ity increase is gained early in the development process (e.g.
before any simulation is performed). The analysis method
is also fairly fast, consistent and sound.

Simulationists are faced with increasingly more complex mod-
els to simulate. A tool that increases the productivity as
well as the quality of models is worth while. We propose
that a dimensional correctness analysis method is incorpo-
rated into the development cycle of model development and
simulation.

We have developed a stand-alone tool of our system that
analyzes gPROMS simulation specifications. It will effec-
tively determine if a gPROMS specification is dimension-
ally consistent or report what equations do not fulfill the
dimensional correctness criteria. We use specially tagged
comments in gPROMS to specify the dimensions of param-
eters and variables. Another tool that will analyze Modelica
specifications is under development.

1.1 Dimensional theory
Dimensions can be seen as elements in an Abelian group,
where the generating elements are the base dimensions. For
instance, in mechanics we have three base dimensions: Mass
(M), Length (L) and Time (T). Each dimension occur-
ring in mechanics is then a “product” of these, like Force
(M1L1T−2). Equivalently, each dimension can be repre-
sented by a vector of base dimension exponents. For in-
stance, the dimension of Force is represented by 〈1, 1,−2〉.
“Multiplication” in the Abelian group corresponds to addi-
tion of the corresponding dimension vectors. Consider, for
instance, the famous Newton’s second law:

F = ma (1)

SIMS 44

www.scansims.org Proceedings of SIMS 2003
Västerås, Sweden, September 18-19, 2003

13

The entities in (1) have the following dimensions:

F m a
Group M1L1T−2 M1 L1T−2

Vector 〈1, 1,−2〉 〈1, 0, 0〉 〈0, 1,−2〉

This exemplifies how multiplication of physical entities cor-
responds to “multiplication” of dimensions, which in turn
corresponds to addition of dimension vectors.

1.2 Inference, Types, and Dimensions
Logical inference systems consist of a set of inference rules,
with a number of premises and a conclusion. An example is
the famous Modus Ponens rule from propositional logic:

MP :
P P ⇒ Q

Q

It states that “if P holds and if P ⇒ Q holds, then we can
deduce that Q holds”.

Inference systems are used to formalize logics. If the logic is
simple enough, then there might exist an inference algorithm
that effectively finds a proof or refutal for a given statement.

Type Inference
Type systems for programming languages can be formulated
as inference systems. A classical type system is Hindley-
Milner’s type system [9, 13]. It is formulated for a simple
functional language, and has the ability not only to check
types, but also to find sensible types for identifiers that are
not type declared. Statements in this system has the form
Γ ` e : σ, where e is an expression, σ is a type, and Γ
is a binding of types to identifiers. It reads “if identifiers
are typed according to Γ, then e has type σ”. This condi-
tional form of the statements gives the ability to find types
for identifiers, since Γ is derived along with the typing of
e. Hindley-Milner’s type system has an efficient inference
algorithm [5].

An example of an inference rule in the system is the one for
function application:

APP :
Γ ` f : σ → τ Γ ` e : σ

Γ ` f(e) : τ

It reads “if the function f has type σ → τ and the argument
e type σ, then the result f(e) has type τ”. Here, σ → τ is a
function type.

Hindley-Milner’s type system is polymorphic, which means
that identifiers can have many types. An example is the
identity function id which is given the type ∀α.α → α by
the type system. Here, α is a type variable. Substituting
different types for α gives the possible types for id , e.g.,
id : int → int and id : string → string . Thus, id(17) : int
and id(”xyz”) : string .

Inference of Dimensions
Dimensional systems can be seen as type systems, where the
“types” for expressions in equations are dimensions. Our
tool is based on the polymorphic dimensional type system

presented in Section 3.3, which is closely related to Hindley-
Milner’s system. A statement in this system has the form
C ` e : δ, where C is a system of linear equations relating the
“dimensional variables” for the identifiers in the equations.

An inference algorithm operates on the equations of the
specification and uses the statements of the type system to
infer new information in the form of dimensional equations.
The dimensional equations are then collected in a system of
linear equations which can be solved with standard linear
system solving methods.

2. RELATED WORK
A lot of time and work has been put into the research of DA.
Mostly this work has been concentrated on DA for general
purpose programming languages, and not for specification
languages. We will not give a full account for this here,
due to space considerations, but try to focus on the most
relevant achievements within the field.

2.1 Dimensional Analysis
DA is far from new in science. For centuries scientists have
used DA to make an initial estimate of the correctness of
their formulas and equations. Even the Π-theorem [3] uses
DA as an underlying model.

One of the early references to DA and computer science is
Thun [18], he shows a clear connection between DA and
computer science, as well as showing some properties of di-
mensional spaces.

Many languages have been extended or augmented to in-
corporate DA, most of them are general programming lan-
guages, as opposed to specification languages for simulation
of dynamic systems.

Hilfinger [8] and Rogers [16] presented DA for Ada. Agrawal
et al [1] shows DA for Pascal. Umrigar [19] and Barton et
al [2] presented a DA system for C++.

The specification language Z [17] has been extended with
DA by Hayes [7]. This work is the most closely related to
our work with respect to language support.

2.2 Dimensional Inference
Wand and O’Keefe [20] proposed a dimensional inference
system for the functional language ML. Their system repre-
sents dimensions as vectors of rational exponents and infers
dimensions by solving corresponding constraint equations
using gaussian elimination.

Some work has been done to further DI, mainly by Kennedy
[11]. Kennedy shows that there is a most general dimen-
sion [10] and how to infer it in ML. Kennedy goes further
and presents a fundamental equation system [12] for infer-
ence and shows that it can be applied to dimensions as well.

3. IMPLEMENTATION FOR GPROMS
gPROMS is a statically typed programming language for
simulation, optimization and parameter estimation of com-
plex processes. The gPROMS simulation specifications are
built using a simple syntax which allows for general mathe-
matical equations to be formalized.

SIMS 44

www.scansims.org Proceedings of SIMS 2003
Västerås, Sweden, September 18-19, 2003

14

We have developed a semi-polymorphic dimensional type in-
ference system for gPROMS that can be used to analyze the
dimensional correctness of the simulation specifications as
well as to infer missing dimensions. In our DI system, each
variable and parameter is associated with a dimension type,
much like the unit annotation of variable types in gPROMS,
representing its dimension. The dimension types are then
used to infer dimensions and derive dimensional consistency
using the rules of the type system. In the following text we
will refer to both variables and model parameters as symbol
entities or symbols.

The concept of semi-polymorphism is based on the idea
of treating certain constructs as polymorphic and other as
monomorphic. The polymorphism enables polymorphic pa-
rameterized models to be defined, while the monomorphism
is required to safely analyze the dimensional consistency of
the model equations. A polymorphic model can work on
a range of different dimensions. One such example would
be a polymorphic regulator model. The same general reg-
ulator could be applied to control a flow as well as a po-
sition. However, once the general model is instantiated we
need the quantities to be monomorphic in order to safely
check the dimensional consistency of the actual equations
involved. Without the monomorphism certain dimensional
inconsistencies would be left undetected, since that would
allow different occurrences of the same symbol to have dif-
ferent dimensions.

Basically our inference system transforms the equations that
make up the simulation specification into equivalent dimen-
sional constraint equations based on dimensional analysis
theorems. The constraints form a system of potentially in-
dependent linear equations which are solved by means of
linear algebra, or specifically Gauss-Jordan Row Reduction.

The solution to the system of equations is the inferred di-
mensions for the symbols in order for the system to be
dimensionally consistent. The dimensional analysis is per-
formed at the same time, since a dimensionally inconsistent
system does not have any solutions.

There are three possible outcomes when solving the con-
straints; a single solution, an infinite number of solutions or
no solutions at all. In case of no solutions, we have a dimen-
sionally inconsistent system. If we have exactly one solution,
the system is dimensionally consistent and each dimension
is fully known. If we have infinite number of solutions, we
have a dimensionally consistent system with dependencies
between the unknown dimensions.

3.1 Dimensional Information
Without any information about the dimensions of the sym-
bols, our DI system can only partially analyze the dimen-
sional consistency of a simulation specification. In order for
the system to derive the actual dimensions of the symbols,
some static dimensional information is required. This in-
formation could be extracted from the unit annotations of
variable types, but then we would still require some other
annotation for the parameter declarations.

We have incorporated dimensional annotation in gPROMS
for both variable types and model parameters. The dimen-
sional annotations are placed within tagged block comments

so the source program specification is still compatible with
the gPROMS environment. The special annotation com-
ment is on the following form: {@dim d}, with d replaced by
the actual dimension.

We decided to use the same base dimensions as the SI system
of units and their corresponding names as acronyms. This
means that instead of using, for instance, the dimension
Length, the SI unit m is used instead. The corresponding
dimensional annotation would be {@dim m}.

3.2 Dimension Types
Each symbol is associated with a dimension variable (~d).
A dimension is represented as a vector of rational numbers,
where each position corresponds to an exponent of a base di-
mension as described in Section 1.1. A dimensionless quan-
tity is represented with the zero vector (~0). Dimension types
(δ) are built from linear combinations of dimension variables
closed under a vector space.

The intrinsic functions are given polymorphic types repre-
sented by the type scheme: σδ = ∀δ1.δ1 → δ2, which asserts
that the functions will work properly for all possible dimen-
sions. Type schemes are commonly used in polymorphic
programming languages to support polymorphic types [4].
Polymorphism is obtained by allowing the type scheme to
be instantiated with different bindings for the universally
quantified types.

The trigonometric functions are treated as polymorphic func-
tions with a dimensionless result. For instance, the trigono-
metric function SIN is assigned the following type scheme:

SIN : ∀δ.(δ → ~0)

The following type scheme is assigned to the SQRT function,
since our system is based on rational exponents:

SQRT : ∀δ.(δ → 1

2
δ)

Basically, the typing of SQRT states that the resulting di-
mensional expression is generated by multiplying the dimen-
sional expression of the argument by the rational factor 1

2
.

The arithmetic operators are given the following polymor-
phic types:

+,- : ∀δ.(δ × δ → δ)
* : ∀δ1δ2.(δ1 × δ2 → δ1 + δ2)
/ : ∀δ1δ2.(δ1 × δ2 → δ1 − δ2)

The type schemes for the operators are incorporated into
the inference rules given in Section 3.3.

3.3 Dimension Type Rules
The language elements of gPROMS are associated with cor-
responding statements in our dimensional type system, called
type rules, which are on the following form: C ` e : δ, where
C is a set of linear equations, e is an expression, and δ a
dimension type. It reads “if identifiers are dimensionally
constrained by C, expression e has dimension δ”.

SIMS 44

www.scansims.org Proceedings of SIMS 2003
Västerås, Sweden, September 18-19, 2003

15

Each equation represents an equivalence relation between
two dimension types, effectively forcing them to represent
the same dimension. For instance, two quantities that are
added must have the same dimension. The purpose of the
type rules is to derive such a system of equations, constrain-
ing the dimensions and thus ensuring dimensional consis-
tency for the entire simulation specification.

Because of limited space we will only present the most im-
portant type rules. A complete set of rules is presented
in [15]. These are the basic type rules:

eqn :
C1 ` e1 : δ1 C2 ` e2 : δ2

C1 ∪ C2 ∪ {δ1 = δ2} ` e1 = e2 : δ1

add :
C1 ` e1 : δ1 C2 ` e2 : δ2

C1 ∪ C2 ∪ {δ1 = δ2} ` e1 + e2 : δ1

sub :
C1 ` e1 : δ1 C2 ` e2 : δ2

C1 ∪ C2 ∪ {δ1 = δ2} ` e1 - e2 : δ1

mul :
C1 ` e1 : δ1 C2 ` e2 : δ2

C1 ∪ C2 ` e1 * e2 : δ1 + δ2

div :
C1 ` e1 : δ1 C2 ` e2 : δ2

C1 ∪ C2 ` e1 / e2 : δ1 − δ2

timederiv : C ` e : δ
C ` $ e : δ − 〈0, 0, 1〉

app :
C1 ` e : δ1 C2 ` func : δ1 → δ2

C1 ∪ C2 ` func(e) : δ2

spec :
C ` func : σδ1

C ` func : σδ1 [δ/δ1]

id :
∅ ` id : env~d(id)

In the type rules above, env~d is a static environment that
maps symbols to their corresponding dimension variables
and functions to their associated type schemes. Bindings

in env~d are looked up in the following way: env~d(id) = ~d,
where id is either a symbol or a function name.

Another environment, envδ, contains mappings between di-
mension variables and dimensions. The dimension variables
are either bound or unbound. If a symbol is dimension-
ally annotated, the corresponding dimension variable will be
bound to the annotated dimension. Unbound variables are
considered free and can thus be bound to any dimension.
Once a variable is bound the binding cannot be changed
which reflects the temporal invariance of dimensions.

3.4 Inference Algorithm
We will now give a description of our dimensional inference
algorithm. These are the basic steps of our inference engine:

1. Derive system of equations, C.

2. Infer trivial dimensions.

3. Solve systems of equations.

Derive system of equations
The system of equations C is derived using the type rules
descried earlier. In practice, the gPROMS source specifi-
cation is parsed and converted into an abstract syntax tree
(AST) whereafter the type rules are applied recursively on
the structure. The resulting system of equations contains
all dependencies necessary to analyze the dimensional con-
sistency.

Infer trivial dimensions
Before we solve the system of equations we use the statically
annotated information to recursively infer new dimensions,
by an extended back substitution algorithm. The process is
based on finding equations with only one unknown, which
are trivially solved.

When such an equation is found, the binding for the un-
known dimension variable is updated and all occurrences
of it are substituted for its dimension. Any resulting re-
dundant equations are removed. This part of the algorithm
terminates when there are no more trivial equations to solve.

During this step it is possible to detect dimensional incon-
sistencies simply by finding equations where the two sides
are not dimensionally equivalent. Such a property is eas-
ily checked once all dimension variables in an equation are
known.

One of the main reasons why we introduce this step is be-
cause we believe that given enough dimensional annotations,
this step will reduce the overall execution time and at the
same time offer qualitative dimensional inconsistency re-
ports. The dimensional inconsistencies found during Gauss-
Jordan Row Reduction are impossible to trace, since the
structure of the system is destroyed during Row Reduction.

Solve systems of equations
If not all equations were removed in the previous step, the
system of equations is divided into one or more partitions
which can be solved independently. A partition is defined as
the least system of equations satisfying the condition that
each dimension variable must only occur in the equations of
one specific partition.

We do not experience any of the numerical problems usually
attributed to Gaussian elimination since we have based our
computations on rational numbers.

Infinite number of solutions
As pointed out earlier, if the systems prove to be solvable the
solution is the inferred dimensions in order for the simula-
tion specification to be dimensionally consistent. Also, when
there are no unknown dimensions we say that the simulation
specification is dimensionally complete.

In the case of infinite number of solutions the specification is
dimensionally consistent but it is not complete, since there
are still unknown dimensions. Often the user might want
to verify that the inferred dimensions are physically correct
which is only possible if the specification is complete.

We have developed a heuristics that suggests to the user
which variables/parameters that should be annotated in or-

SIMS 44

www.scansims.org Proceedings of SIMS 2003
Västerås, Sweden, September 18-19, 2003

16

Height

R

Figure 1: Schematics of a simple buffered tank

der for the simulation specification to be dimensionally com-
plete as well as dimensionally consistent. Intuitively, the
heuristics favors those symbols that are most frequently oc-
curring.

3.5 DI Tool Description
Our DI system has been implemented in Java as a stand-
alone tool in the form of a command-line based console ap-
plication. The tool is invoked as a separate pass either dur-
ing model development or before the actual simulation. The
input is a gPROMS source simulation specification and the
output states the corresponding dimensional consistency.

Polymorphic models can be specified if some variable types
are not dimensionally annotated. Variable types that are
not annotated are considered polymorphic, which ensures
that variables of that type can have different dimensions.
For instance, to specify a polymorphic regulator model at
least the variable types of the input and output should not
be annotated.

4. GPROMS MODEL EXAMPLE
Consider the simple gPROMS model of a buffered expansion
tank depicted in figure 4 and the following gPROMS source
specification:

DECLARE

VARIABLE

Length = 0 : 1E-10 : 1E10

Flow = 0 : 1E-10 : 1E10 {@dim m^3/s}

Volume = 0 : 1E-10 : 1E10

END

MODEL BufferTank

PARAMETER

CorrFactor AS REAL

R AS REAL

VARIABLE

Buffer AS Volume

Inlet, Outlet AS Flow

Height AS Length

EQUATION

$Buffer = Inlet - Outlet ;

Buffer = 3.14159 * R^2 * Height ;

Outlet = CorrFactor * SQRT(Height) ;

END

The following constraint equations are generated from the
source model specification:

~dBuffer − ~dFlow = 〈0, 0, 1〉
~dFlow − ~dFlow = 〈0, 0, 0〉

~dBuffer − 2~dR − ~dHeight = 〈0, 0, 0〉
~dFlow − ~dCorrFactor − 1

2
~dHeight = 〈0, 0, 0〉

In the above equations, each dimension variable corresponds
to a specific symbol in the source model. For instance, the

associated dimension variable of the parameter R is ~dR. Ob-
serve that the variables Inlet and Outlet are replaced by

the associated dimension variable of their type, ~dFlow, since
it is statically annotated and no longer polymorphic. The

equation ~dFlow − ~dFlow = 〈0, 0, 0〉 is redundant and thus re-
moved. The DI engine now applies the dimensions known
via dimensional annotations in order to infer new dimen-
sions recursively. Since the symbol Flow is known to be of
dimension m^3/s all occurrences of Flow are substituted for
its dimension, which leaves us with the following equations:

~dBuffer = 〈0, 3, 0〉
~dBuffer − 2~dR − ~dHeight = 〈0, 0, 0〉
−~dCorrFactor − 1

2
~dHeight = 〈0,−3, 1〉

According to the equation ~dBuffer = 〈0, 3, 0〉, ~dBuffer must be

bound to 〈0, 3, 0〉. Now all occurrences of ~dBuffer are substi-
tuted for 〈0, 3, 0〉 and the equation is removed, yielding the
following equations:

−2~dR − ~dHeight = 〈0,−3, 0〉
−~dCorrFactor − 1

2
~dHeight = 〈0,−3, 1〉

The corresponding system of equations proved to be con-
sistent, but since we only have two equations but three
unknowns the system could not be unambiguously solved.
Therefore the inference system given our heuristics suggest
that the symbol Length should be annotated (the variable
type of Height). If we annotate Length to be of dimension
m and run the analysis again, we end up with the following
inferred dimensions:

~dBuffer = 〈0, 3, 0〉
~dR = 〈0, 1, 0〉

~dCorrFactor = 〈0, 5
2
,−1〉

~dFlow = 〈0, 3,−1〉
~dHeight = 〈0, 1, 0〉

As a result, the simulation specification was proven to be
dimensionally consistent as well as complete. Due to the
completeness the simulationist can now analyze the inferred
dimensions and verify their correctness.

The inferred dimension for CorrFactor is possible since we
use rational exponents. If we would have used integer expo-
nents, like Kennedy [11], the inference would have failed.

SIMS 44

www.scansims.org Proceedings of SIMS 2003
Västerås, Sweden, September 18-19, 2003

17

5. CONCLUSIONS
We have presented an analysis method to guarantee the di-
mensional correctness for simulation specification languages.
Further, we have implemented a prototype for gPROMS,
and another tool for Modelica is under development.

We strongly believe that Dimensional Inference can increase
correctness and the quality of simulations by insuring that
the models are dimensionally correct.

Our gPROMS tool is ready for extensive testing of com-
mercial models. We have performed small and medium test
cases and are waiting on the Modelica tool to be finished
so we can continue with extensive testing of the Modelica
library.

6. FUTURE WORK
As we stated before our analysis method has been imple-
mented as a stand-alone tool for gPROMS and will also
be soon for Modelica. This is not an optimal solution in
our opinion. Our method should be integrated into the
simulation language tools. We also believe that our anal-
ysis method could be more effective if the specification lan-
guages are extended to incorporate dimensional constructs.
So far we have used comments in gPROMS to annotate
dimensional information, which is cumbersome and time-
consuming.

The next natural step in the research would be to extend
DI to be a full unit checking system. A unit checking sys-
tem would be able to dimensionally check models developed
in the English Imperial measurement system in conjunction
with the SI system of measurement, thereby helping to in-
crease the correctness for such models.

We would like to see our analysis method used in more sim-
ulation specification languages as well as other simulation
environments that might not use a language as a primary
specification model (e.g. visual specification of models).

7. ACKNOWLEDGEMENTS
We would like to thank ABB Corporate Research Center,
Department of Industrial IT and the KK-foundation (grant
2001/0214) for their support.

8. REFERENCES
[1] M. B. Agrawal and V. K. Garg. Dimensional analysis

in PASCAL. ACM SIGPLAN Notices, 19(3):7–11,
Mar. 1984.

[2] J. J. Barton and L. R. Nackman. Dimensional
analysis. C++ Report, 7(1):39–40, 42–43, Jan. 1995.

[3] E. Buckingham. On physically similar systems:
Illustrations of the use of dimensional equations. Phys.
Rev. 4, pages 345–376, 1914.

[4] L. Cardelli. Basic polymorphic typechecking.
Computing Science Technical Report 112, AT&T Bell
Laboratories, Murray Hill, 1984.

[5] L. Damas and R. Milner. Principal type-schemes for
functional programs. pages 207–212, 1982.

[6] P. Fritzson and V. Engelson. Modelica—A unified
object-oriented language for system modeling and
simulation. In E. Jul, editor,
ECOOP ’98—Object-Oriented Programming, volume
1445 of Lecture Notes in Computer Science, pages
67–90. Springer, 1998.

[7] I. Hayes and B. Mahony. Using Units of Measurement
in Formal Specifications. Formal Aspects of
Computing, 7(3):329–347, 1995.

[8] P. N. Hilfinger. An ada package for dimensional
analysis. ACM Transactions on Programming
Languages and Systems, 10(2):189–203, Apr. 1988.

[9] J. R. Hindley. The principal type scheme of an object
in combinatory logic. volume 146, pages 29–60, 1969.

[10] A. J. Kennedy. Dimension types. In D. Sannella,
editor, Programming Languages and
Systems—ESOP’94, 5th European Symposium on
Programming, volume 788 of Lecture Notes in
Computer Science, pages 348–362, Edinburgh, U.K.,
11–13 Apr. 1994. Springer-Verlag (LNCS 788).

[11] A. J. Kennedy. Programming Languages and
Dimensions. PhD thesis, University of Cambridge,
Computer Laboratory, Cambridge, United Kingdom,
April 1996.

[12] A. J. Kennedy. Type inference and equational
theories. Technical Report LIX/RR/96/09, LIX, Ecole
Polytechnique, 91128 Palaiseau Cedex, France, Sept.
1996.

[13] R. Milner. A theory of type polymorphism in
programming languages. Journal of Computer and
System Science, 17(3):348–375, 1978.

[14] C. Pantelides. An advanced tool for process modelling,
simulation and optimisation. In CHEMPUTERS
EUROPA III, Frankfurt, 1996.

[15] D. Persson. Dimensional inference for gproms.
Master’s thesis, Mälardalen University, Computer
Science Laboratory, Väster̊as, Sweden, in preparation.
2003.

[16] P. Rogers. Dimensional analysis in Ada. ACM
SIGADA Ada Letters, 8(5):92–100, Sept./Oct. 1988.

[17] J. M. Spivey. The Z Notation : a reference Manual.
C.A.R. Hoare Series Editor, 1989.

[18] R. E. Thun. On dimensional analysis. IBM Journal of
Research and Development, 4:349–356, 1960.

[19] Z. D. Umrigar. Fully static dimensional analysis with
C++. ACM SIGPLAN Notices, 29(9):135–139, Sept.
1994.

[20] M. Wand and P. M. O’Keefe. Automatic dimensional
inference. Computational Logic: in honor of J. Alan
Robinson, pages 479–486, 1991.

SIMS 44

www.scansims.org Proceedings of SIMS 2003
Västerås, Sweden, September 18-19, 2003

18

	Sweden
	Simulation of volatile gas release from a small dry wood particle undergoing pyrolysis in a hot convective flow field
	Abstract
	
	
	
	
	Mathematical model

	The computational domain
	Modelled species

	Chemical mechanisms for the pyrolysis of wood
	Model equations for the inner of the wood log
	Energy

	Model equations for solving the convective gas flow surrounding the wood log
	Energy
	
	
	
	Simulations

	Studied parameters
	Wood/char heating
	Conversion from wood to char
	Volatiles released to the surroundings

	Results
	
	Wood/char heating
	Volatiles released to the surroundings
	
	
	Discussion

	Permeability
	Thermal conductivity
	Pyrolysis reaction rates

	Thermodynamic and transport properties
	
	Janse et al. (2000)
	
	Nomenclature
	
	Notation

	A
	B
	D
	d
	H
	p
	Q
	S
	T
	Y
	(
	(
	(
	eff
	
	References

	M. Nikian1, M.Naghashzadegan2 and S.K. Arya3
	Tareq A. Abu Shreehah
	ABSTRACT
	KEYWORDS
	 Machining, turning, alumina base ceramics, cermet, and process quality.
	1	INTRODUCTION
	2	EXPERIMENTAL STUDY
	Some physical and mechanical characteristics
	Hardness

	CONCLUSIONS
	REFERENCES

