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Abstract

During the development of the component-based en-
ergy system simulator DNA (Dynamic Network Anal-
ysis), several obstacles to easy use of the program have
been observed. Some of these have to do with the na-
ture of the program being based on a modelling lan-
guage, not a graphical user interface (GUI). Others
have to do with the interaction between models of the
nature of the substances in an energy system (e.g., fu-
els, air, flue gas), models of the components in a sys-
tem (e.g., heat exchangers, turbines, pumps), and the
solver for the system of equations. This paper pro-
poses that the interaction between models and solvers
should be made more robust by making more robust
component models which handle the exceptions of the
equations inside them, instead of or in addition to try-
ing to remedy these by adding features to the numer-
ical solvers. Improving the robustness of a compo-
nent model may be more or less difficult depending on
the mathematical expressions creating the exceptions.
The proposed idea suggests that the solvers may be
helped by exception handling leading it back on the
right track. The original equation of the model is sub-
stituted by an algorithm, so the original equation is
only evaluated where it is defined. Outside this re-
gion an algorithm is introduced, so the model iterates
back to the feasible region. It is shown how this can be
done for four different model of energy system compo-
nent models: turbine constant, gasifier, heat exchanger
effectiveness, and heat exchanger heat transfer coeffi-
cient.

Nomenclature

A Heat transfer area

B Number of atoms of an element per mole of a
gas compound

c cold side (index)

CT Turbine Constant

δ A small number

ε effectiveness

G Gibbs free energy

g0 Standard Gibbs free energy

h Enthalpy

h hot side (index)

i inlet (index)

∆Tlm Log mean temperature difference

lim limit (index)

ṁ mass flow

max maximum (index)

min minimum (index)

ṅ Molar flow

o outlet (index)

p pressure

Q̇ Heat flow

R Gas constant

T Temperature

U Heat teansfer coefficient

x Variable in example

y Molar fraction

z Variable in example
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1 Introduction

Many solvers for energy system simulation are avail-
able commercially, inhouse in companies or as more
or less experimental tools in universities (Refer to
[2, 5, 7, 9, 13, 10] for lists of such tools.). A tool of
this type will (usually) include:

• input-output facilities

• model checking

• model solving

• models of thermodynamic properties of fuels and
fluids

• models of energy system components and/or pos-
sibilities for implementing these

The tools may be distinguished by several features:

• equation-based versus component-based mod-
elling

• text-based versus graphical user interface

• solvers for algebraic versus differential equations

• solvers based on (sequential) functional iteration
versus (simultaneous) numerical solvers

It is probably a matter of the selected implementation
of a tool (and a matter of taste of the user and the de-
veloper) which methods are claimed to be most effi-
cient and user-friendly in model implementation and
simulation1.

1.1 Exceptions in Mathematical Formulation
of Models

In the modeling process[11], each step from the mind
model, through physical and mathematical models to
numerical model, may introduce exceptions where the
model is not well-defined for given values of some of
the variables. For instance, a negative value of pres-
sure does not make physical sense, but may uninten-
tionally be applied to the numerical model during iter-
ations, and thus should be handled.
Several methods for taking care of the problems simu-
lation of a model may cause, have been proposed and
are in use in different software. Most of the methods

1Simulationis in this paper referred to as the act of solving a
system of equations. A dynamic system may involve differential
equations, and will as such be a number of “simulations” solved
in sequence.

handle the problems by catching the exceptions and is-
sue an error message. The ways that may be followed
is to some extent prescribed by the way the system of
equations is represented internally in the software. If
the model is written in plain text much more informa-
tion about the equations is available compared to ap-
plications where models are compiled code. For the
latter case, Morton an Collingwood [14] describes a
way to numerically analyze a system of equations to
determine problems in its initialization.

It should be mentioned that several methods with
better convergence characteristics than the ordinary
Newton method have been proposed, e.g., Powell’s
method[3] and continuation methods [1], but these all
seem to require continuity of the equations.

In the software EES (Engineering Equation
Solver)[12], (which is equation-based rather than
component-based), the user may define limits on
all variables to keep them in the feasible region.
In connection with a graph analysis of the system
of equations to solve smaller systems in sequence,
a robust solving environment is available. This
method, however not well documented in literature,
seems to be similar to the method of Shacham and
Brauner [16], which, after thorough analysis of the
equations, introduces subexpressions of all equations
with discontinuities and controls the variables to stay
inside these boundaries or steps inside another region.
These methods both require special techniques to be
used in the solver, whereas this paper proposes that
the problems created by the model should also be
handled by the model.

2 Proposed Idea

The above described methods catch some exceptions
and remedy the problem or warn the user about it.
One problem that is not handled in a way that ensures
convergence of the simulation, however, is the prob-
lem connected to some variables reaching values that
makes the model be evaluated where some equations
are mathematically undefined. In the present paper, it
is proposed that models may be extended such that the
exception will not result in an evaluation of the model
at such points, but instead of a modified model which
makes the values of the variables return to the well-
defined range through iterations.
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3 Examples of Application

This section describes a number of applications of the
proposed methodology, where it has shown useful dur-
ing the implementation of DNA (See appendix for an
description of the program). As a first simple example
the natural logarithm, defined asy = ln(x) has been
implemented robustly in EES as a residual, as shown
in Algorithm 1.

Algorithm 1 Making the natural logarithm robust
if x > 0 then { x is positive and the logarithm is de-
fined}

0 = ln(x)−z
else ifz= 0 then {Makes the solver converge also
for z= 0}

0 = x−1
else ifz> 0 then {Iterates to a positivex for x < 0
and az> 0}

0 = x ·z−1
else{Iterates to a positivex for x < 0 and az< 0}

0 = x ·z·z−1
end if

The idea is that if the iterations is trying to calculate
the residual for a negative value ofx, where it is un-
defined. The exception is caught by defining branches
to the residual, which will not have a solution in the
interval where they are defined, but instead will lead
x back to the positive axis. This implementation has
been tested and found to converge forx defined andz
dependent and vice versa, forx-values in the interval
[10−5;105] and different guesses onzandx making the
calculation start in each of the branches. For low val-
ues ofz, a factor may be multiplied to the first term in
the last two branches and a term higher than 1 may be
subbtracted. The branch forz= 0 seems to be super-
fluous, but in the present EES implementation it has
been found necessary.

3.1 Turbine Constant

A turbine, as shown schematically in Figure 1, pro-
duces power by allowing a compressed gas to expand
and by the kinetic energy from this expansion make
the turbine blades move. It is commonly modelled by
an isentropic or polytropic efficiency and by a turbine
constant, which relates mass flow to pressure accord-
ing to the formulation:

CT =
ṁ
√

T√
p2

i − p2
o

(1)

Inlet

Outlet

Power

Figure 1: Schematic of a turbine

whereT is in Kelvin.
This equation has a few exceptions, i.e, it is only de-
fined for|pi |> |po| and positiveT. This may be reme-
died by a few manipulations to obtain:

C2
T(p2

i − p2
o)− ṁ2T = 0 (2)

However, this formulation does not ensure a physi-
cally correct solution, even if the problem converges.
The equation has a negative and a positive solution for
both ṁ andCT . Physically the negative solution does
not make sense, but only by introducing a formulation
like:

|CT |CT(p2
i − p2

o)−|ṁ|ṁT = 0 (3)

a correct solution is ensured.

3.2 Heat Exchanger Effectiveness

Th,o

Tc,i

Th,i

Tc,o

∆Th

∆Tc

Figure 2: Temperature profile of a heat exchanger

Heat transfer in heat exchangers is driven by a temper-
ature difference. This means that the temperature of
one fluid will be higher than that of the other over the
whole device as depicted in Figure 2. It may be mod-
elled in several ways. Two common ways are: By in-
troducing an effectiveness as discussed in this section,
or by the heat transfer coefficient, discussed next. The
two methods are related and models the same charac-
teristic of the device, i.e., how much energy is trans-
ferred from the hot fluid to the cold in a double pipe
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heat exchanger. In this case, a counterflow exchanger
is considered. The heat transfer in this is:

Q̇ = UA∆Tlm (4)

U is calculated from the flow conditions on both sides
of the transfer surface,A. The ∆Tlm is an average
driving temperature difference for the whole heat ex-
changer. The effectiveness,ε of the heat tranfer is de-
fined by:

Q̇ = εQ̇max (5)

where the maximum possible heat transfer is what
would be obtained if one stream exited at a temper-
ature equal to the inlet temperature of the other. The
effectiveness is a (non-linear) function of theNumber
of Transfer Units, NTU, which defined as:

NTU =
UA

(ṁcp)min
(6)

For a counterflow heat exchanger the effectiveness re-
lation can be expressed as:

ε(Th,i −Tc,i) =
{

∆Th, for (ṁcp)h < (ṁcp)c

∆Tc, for (ṁcp)h ≥ (ṁcp)c
(7)

The calculation of the average specific heat,cp, of a
fluid may be approximated by2

cp =
∆h
∆T

(8)

In order to avoid division by zero, the temperature
difference should not be evaluated when the current
guesses during iteration of the two temperatures of one
of the fluids are equal.
Thus algorithm 2 should be introduced to make the
model catch this exception.

Algorithm 2 The heat exchanger effectiveness
if ε = 0 then {No heat transfer}

Th,i −Th,o = 0
else if |Th,i − Th,o| < δ ∨ |Tc,i − Tc,o| < δ then
{Catching the exception}

Th,o−Tc,i −δ = 0
else

Use equation 7
end if

This algorithm has been implemented in DNA and
converges for any set of guesses of temperatures.

2The specific heat may also be calculated in property routines

3.3 Heat Transfer Coefficient

For a counterflow heat exchanger the log mean tem-
perature difference in equation 4 is expressed as:

∆Tlm =
(Th,i −Tc,o)− (Th,o−Tc,i)

ln

(
Th,i −Tc,o

Th,o−Tc,i

) (9)

This expression is more complicated to handle as the
logarithm in the denominator has several exceptions. It
was found to converge for many sets of temperatures
if it is implemented as presented in [6] and has been
improved for this study, see algorithm 3.

Algorithm 3 Heat transfer coefficient model
if Th,i = Tc,i then {The inlet temperatures are equal}

hh,i −hh,o−δ = 0
else ifTh,o > Th,i then {Positive temperature differ-
ence of hot fluid}

Th,o−Tc,i −δ = 0
else ifTc,i > Tc,o then {Negative temperature differ-
ence of cold fluid}

Th,i −Tc,o−δ = 0
else if Tc,i > Th,o∧Tc,o > Th,i ∧UA > UAlim then
{Negative temperature difference at both ends and
highUA}

hh,i −hh,o−δ = 0
else ifTc,i > Th,o∧UA>UAlim then {Negative tem-
perature difference at cold end and highUA}

Th,o−Tc,i −δ = 0
else ifTc,o > Th,i∧UA>UAlim then {Negative tem-
perature difference at hot end and highUA}

Th,i −Tc,o−δ = 0
else if (Tc,o > Th,i ∨Tc,i > Th,o)∧ (ṁcp)h > (ṁcp)c

then {Negative temperature difference at any end
and highest capacity of hot fluid}

Th,i −Tc,o−δ = 0
else if (Tc,o > Th,i ∨Tc,i > Th,o)∧ (ṁcp)h ≤ (ṁcp)c

then {Negative temperature difference at any end
and highest capacity of cold fluid}

Th,o−Tc,i −δ = 0
else ifTh,i −Tc,o = Th,o−Tc,i then {Same tempera-
ture difference at both ends}

UA(Th,i −Tc,o)− ṁh(hh,i −hh,o)
else{No exceptions to catch}

Calculate the residual according to equations 4
and 9

end if

UAlim is a value of the heat transfer coefficient and area
which will result in a very low temperature difference
(≈ 10−5°C) at one end.
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This algorithm has proven very robust in use in DNA
both for single components and in system models, e.g.,
heat exchanger networks. Usually, DNA will provide
the model with good guesses for the variables in the
system, but the user has to decide a few guesses and
has the freedom to insert additional guesses. The lat-
ter possibility has been used to test the robustness of
this implementation forUA-values in the range of 0 to
10000 and with different mass flows and inlet tempera-
tures and guesses of outlet temperatures far away from
and both below and above the correct value (±100-
200°C). The algorithm finds the correct solutions in
all of the tested cases, but the number of iterations may
vary much.

3.4 Gasifier

The final example of energy system models which may
be improved with regards to robustness is a model of
a gasifier. A gasifier converts a solid fuel into a com-
bustible gas and a remaining ash fraction, by adding
heat and gasification agent, e.g., steam and/or air, to
the fuel. Often the model of such a component is to
some extent based on the calculation of chemical equi-
librium in the outlet gas, as would be obtained if the re-
action “had time enough”. The calculation of chemical
equilibrium may be carried out be minimizing Gibbs’
free energy in the gas summing over all,k, constituents
of the gas.

G =
k

∑
i=1

ṅi

(
g0

i +RT lnyi

)
(10)

The minimization is constrained because an atom bal-
ance for each element (e.g., Carbon, Oxygen, Hydro-
gen) in the reactants must be made:

k

∑
i=1

ṅi,inBi j =
k

∑
i=1

ṅi,outBi j (11)

where indexi, and j, refer to a gas compound and an
element, respectively.
The minimization is in DNA done by introduction of
Lagrange multipliers[5]. However, in order to be gen-
erally applicable the gasifier model must account for
all atoms present in usual gasifier product gases. These
are Carbon, Oxygen, Hydrogen, Nitrogen, Sulphur,
Argon. In some cases the modeller will neglect the mi-
nor components and the atom balance for these loses
relevance. But, the gasifier model has to be prepared
for any of these as the amount of one may vary be-
tween being present and zero during a simulation, due

to guesses and other components. If an element is not
present in the gas the Lagrange multiplier for this con-
straint will not have any relevance and will result in a
singular system of equations.
One way which has been found robust for this prob-
lem is to substitute the atom balance for an unpresent
element by a simple assignment of a value to the mul-
tiplier as in algorithm 4.

Algorithm 4 Gasifier model
if The element is presentthen

Calculate the atom balance, equation 11
else

Set the Lagrange multiplier for this constraint to
0

end if

4 Discussion

Above it has been demontrated that even some of
the well-known troublesome models ín energy system
modelling may be made robust by the proposed idea of
iterating in expressions which make the variables en-
ter the feasible region, if this has been left during iter-
ations. It is worth noting that the branches introduced
in the model outside the feasible region are much sim-
pler (more linear) expressions than the original mod-
els. This means that only few iterations are required
to enter the feasible region. However, as this is a rem-
edy it does require more iterations and longer calcu-
lation times when the model exits the feasible region
during iterations. The number of iterations required
and the speed of the solution may be dependent on
the actual implementation of the numerical methods
and the complete system of equations. It should be
mentioned that for some sets of guesses the model of
the heat transfer coefficient-method only converges if
the parameters of damping and the Jacobian updates
of the Newton method is within a given interval. An-
other complication of energy system models is that
they have to work in connection with models of the
properties of the substances involved in the system.
These usually also involve their own numerical meth-
ods (it has been stated that as much as 75% of the
calculation time is used in these[15]) and may have
exceptions, that can cause trouble. Some variables
which my cause trouble are pressure and molar frac-
tions which must be positive. From experience it does
not seem to be enough to limit these values to ensure
convergence.
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5 Conclusion

An idea of ensuring convergence of numerical mod-
els of physics by catching exceptions to the equations
and branching these to iterate back to the feasible re-
gion of the values of the variables has been presented
and demonstrated by the application to energy system
models. A simple application to the natural logarithm
has been implemented and demonstrated in EES. Ap-
plications of the approach to models of components in
energy systems: turbine, heat exchanger, and gasifier,
have been implemented and demonstrated in DNA. It
has been shown that these extends the convergence in-
terval of these models to values far away from the fea-
sible region. It is also the experience from actual work
with these models in system models.
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A The software DNA

DNA is an energy system simulation tool which has
both steady state and dynamic simulation features and
has proven useful through several research and student
projects involving simulation of e.g., steam power, gas
turbines, fuel drying, pyrolysis and gasification, fuel
cells, and heat exchanger networks.
Recently, DNA has been introduced in the regular edu-
cation of energy engineers at the Technical University
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of Denmark for teaching energy systems with good re-
sults. The experience is that it takes about a week for
new users to learn to use the program.
DNA includes

• a modified Newton method solver for steady state
models, with the linear algebra based on a sparse
matrix technique. The solver is modified so it
uses numerically calculated differences instead of
differentials and that the Jacobian is only updated
“when necessary”. The iterations step may be
damped as well.

• an up to fourth order, variable step size BDF
(Backward Differentiation Formulae) solver for
dynamic simulation,

• an extendible component model library which is
compiled into the code, and

• routines for calculation of state variable prop-
erties, transport properties and radiative proper-
ties of fluids and solids, e.g., ideal gas mixtures,
water/steam, carbon dioxide and solid fuels and
ashes.

DNA is also the name of the modelling language, and
the system model written by the user is compiled and
simulated in one run by the program also named DNA.
DNA is a free software system and may be down-
loaded via the internet [4]. The source code is also
available. DNA is a text-based tool, and at present it
does not have a graphical interface. The most com-
monly used interface to the program is the text editor
GNU Emacs. For inclusion of new components in the
program a (Fortran) compiler is required. Both Emacs
and compilers, i.e., the GNU compiler collection, are
distributed as Free software [8]. This means that DNA
can be used at no expense.
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