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Abstract: Simulations in today’s industry are becoming increasingly complex and are requiring more and 
more computing power to gain higher efficiency.  One way of solving this is by adding computing power 
to the machine performing the simulation. However, this approach is not only costly but also in some 
cases requires time-consuming re-programming of the simulation environment to fully utilize the 
increased performance. A solution to this is to divide the problem into different subtasks and distribute 
them on several machines running possibly different simulators. Although this at first glance seems to be 
an appealing solution, these types of systems tend to introduce new obstacles. In order to minimize costs, 
these distributed simulation environments often need to include many already existing systems. The 
simulators are also in many cases closed environments, which are difficult to communicate with due to 
their varying data format, communication protocol and data exchange models. For such heterogeneous 
systems it is a challenge to obtain a seamless integration, in particular if there are requirements for system 
expansion either by integrating new simulators or introducing new simulations. This paper describes these 
challenges and a middleware concept that meets them. Further it gives an example the middleware 
component “the DOTS Middleware Model (DMM)” that has been developed and that meets the 
requirements and challenges discussed. 

1 Introduction  
Trying to establish integrated simulation environments including many different simulators and 
platforms automatically lead to problems when interoperation between the systems is 
considered; there are no pre-defined solutions for integrating multiple simulation environments 
that differ in many factors. 

The DOTS EU project (Flexible and eco-efficient paper production through Dynamic 
Optimization of operational Tasks and Scenarios) is collaboration between many stakeholders in 
different countries that addresses the situation mentioned above. The main objective in the 
project is to use a number of pre-existing simulators in collaboration with a recently developed 
optimizer. Optimizations are performed with respect to different criteria (price, energy 
consumption, etc.) to achieve more efficient paper production. A toolset for dynamic 
optimization of process actions based on the underlying dynamic process simulators will be 
developed. Even though the project mainly focuses on the paper industry, the approach itself and 
many of the results can be generalized to suit other situations. 

The aim of this paper is to introduce and discuss a component-based and middleware approach 
for integration of different types of systems. The advantages and disadvantages of such approach 
are discussed and an example of a middleware component that enables interoperation between 
the systems (simulators) is demonstrated. 

We start in section 2 by examining the different challenges that arise in the development of 
distributed simulation systems. Section 3 deals with possible approaches to achieve 
interoperation between the systems, while section 4 examines the DOTS approach in more 
detail. Section 5 provides a use case of the latter model and the paper completes with a 
conclusion and future works.   
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2 Challenges of Simulator Interoperability 
In order to optimize a particular process different optimization models can be used. In cases of 
complex processes, only analytic mathematical models cannot be used, but values of some 
variables can be provided by simulators. For different type of processes exist different 
simulators, and for complex processes, interoperation between different simulators is required. A 
total solution in such cases is a system that may consist of several simulators and of one or 
several optimizers.  The main advantage of such approach is a possibility to build solutions for 
optimizing complex process by reusing optimizers and simulators as already existing 
components. For a seamless work, a seamless integration between these components is required. 
From the interoperability point of view two main aspects must be considered: Run-time behavior 
(performance and availability, i.e. the ability of the systems to provide the results in expected 
time frames), and life time characteristics (modifiability and interoperability, i.e. ability to easy 
improve or add new functions of a systems by adding new components-simulators and protocols 
of information exchange). 

The system should have support for different types of simulators with different interfaces and 
data formats. Different platforms and operating systems also pose demands on the system, 
mainly concerning the communication protocol used for exchanging data. Furthermore, the 
countries and companies involved have their own specific requirements that need to be 
integrated into the system. Efficiency and security issues are other types of challenges that the 
system must be able to manage.  

Since it is often necessary to add new types of data and features to such systems, it has to be 
open for modifications and be fairly easy to update; it must be flexible and extensible enough so 
that changes can be made easily without having to make extensive alterations to the overall 
structure of the system. It must also provide an integrated environment that makes combining 
different simulators possible.  

The important point to keep in mind here is that the interoperability issues should not increase 
the complexity of the entire system. In addition, information and services provided should 
remain simple, standardized and efficient.  

3 Possible Interoperation Solutions 
Interoperability and integration is one of the main problems of system development, in many 
engineering domains [1]. There are different integration approaches, none of them being able 
successfully meet requirements outline in the previous section [1][2]. 

In general, there are three different ways to achieve interoperability:  

• Offline translation of data using temporary files and off-line filters: This approach is 
quite ineffective and impractical; identifying and introducing manual procedures for data 
exchange is in practice too time-consuming and inefficient. 

• Full integration using a common engineering database: In this case, there is a need for 
developing a common information model and a package gathering the functionality of all 
simulators involved using the same structures and data, a common API and a common user 
interface. However, the lack of common and standardized data types for the simulators 
makes this model unfeasible. Furthermore, adding new simulators would be rather 
complicated, as extensive changes must be made in large parts of the system.  

• Loose integration keeping isolated application and implemented interpolation 
“bridges”: Since each simulator in the system has its own API, every new simulator 
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introduced in the system requires implementing new interoperability functions. Component-
based technologies, such as .NET [3][4] provide many standardized interoperability features, 
which radically reduce the distributed development efforts by for example providing 
distributed debugging features.  

Creating adapters as middleware components that uses APIs of the simulators and optimizers 
makes is possible to achieve a better interoperability than filter-based and significantly less 
expensive that data-based solution. A disadvantage of this approach is a number of adapters that 
increases with the increase of the number of the nodes; For communication between n-nodes, 
n(n-1)/2 adapters must be implemented. 

By creating a middleware application developing a common meta translation model and 
implementing translation between specific and common model and at the same time utilizing 
component-based technologies, a loose integration can be achieved. For this reason it is more 
convenient that a common meta-adapter is specified which connects all the components. The 
second approach has obvious advantages. When adding a new simulator, a new adapter between 
this simulator and the meta adapter must be created, not adapters between all possible 
connections to this simulator (see Figure 1). 
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Figure 1. Point-to-point adapters and common mate adapter solutions 

4 The DOTS Middleware Model  
Following the reasoning described in the previous sections it was decided to specify a common 
meta interoperation model using a component-based technology and develop a middleware 
application (the DOTS Middleware Component). The DOTS Middleware components) uses a 3-
tiers distributed architecture, dividing the system into three main layers in order to make it easier 
to modify and extend, when adding new simulators or data. The three layers together with their 
included nodes are described in Figure 2.  

The Optimizer Layer contains one or several optimizer nodes, each including an optimizer and 
its corresponding adapter application. Optimizers communicate with simulators through the 
middleware components. In the concrete cases considering so far, the relation between an 
optimizer and simulators are master-slave. Communication between optimizers has not be 
considered, although the DOTS middleware component enables it.  

In the same manner, the Simulation Layer includes one or several simulator nodes containing a 
simulator application and a matching adapter.  
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The key intercommunication function is performed in the Middleware Layer: handling the 
communication between the other two layers by using the adapters on each side. The 
Middleware Component is implemented as a .NET Web Service, using XML as data format and 
SOAP as communication protocol. All adapters in the system must also handle this format and 
protocol. More information concerning .NET, XML and SOAP can be found in [3]-[8].  

In addition to the Middleware Component, the Middleware layer also includes a database. 
Database includes the intermediate results provided by simulators (and required by the 
optimizer). There are several reasons for storing results in the database: A simulation process 
may be time consuming and if the same process is repeated, a result that has been provided from 
a simulator before can directly be used. Similarly, the results may be used if  a simulator is not 
running.   

 

Figure 2. Overall system architecture 

4.1 Benefits of the model 

The distributed simulation environment is managed by utilizing the .NET component technology 
in conjunction with adapter applications. The included features in .NET, mainly the pre-defined 
communication protocol and data format, are used by the Middleware Component (MC). .NET 
provides services to calling applications via the Internet, no matter where they physically reside 
or which platform they use, as long as they support .NET. The second part of the solution lies in 
the adapter applications; they handle all communication between their respective simulator or 
optimizer and MC. All this is managed transparently to the end user. 

Flexibility and scalability is mainly achieved through the diversity allowed in the participating 
node adapters. As long as they conform to the common communication protocol and data 
format, they are usable in the system. If the adapters in addition are developed in the .NET 
platform, also other advantages, such as language interoperability, are achieved.  

The DOTS middleware model is extensible in the sense that new data types and formats can be 
easily added to the system. Only one part, the MC, needs modification, yet the change become 
available to the whole system. The same applies to the process of adding new simulators.  Since 
MC together with the adapters handle all communication and data conversion, the users need not 
bother conversions of data between different simulators or optimizers, but can use the formats 
that are defined by the local simulators. 

Many of these benefits are due to the extensibility and flexibility offered by XML and SOAP. 
Moreover, security problems such as firewalls are automatically avoided, since one of the 
protocols included in SOAP is HTTP. 
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4.2 Limitations of the model 

Most drawbacks with the model occur when the system is deployed very first time. The 
proposed solution for the distributed environment imposes development of all adapters for each 
new node connected to MC. 

The same goes for the efficiency problem; many simulations need to be carried out before the 
performance benefits can be fully achieved. Distributed simulation via Internet may call for 
extensive data exchange and may introduce overhead to the time spent on each simulation before 
many simulation results have been stored.  

True platform independence has not yet been fully reached, as for the full interoperability a 
.NET complied platform is required. For simulators running on platform that not include .NET 
technology (for example some UNIX platform) require additional way of communication. It that 
cases a client application on the simulator site must be developed that can start the simulation 
process and pass it to MC. 

5 Case Study: Optimization of Paper Machine Grade Changes 
When creating optimization of a new process, one part, related to the MC, is to identify the data 
that will be passed between the optimizer and the simulator(s). In this section we illustrated the 
definition process by a case study. 

In a paper mill, a single paper machine is often used to produce many different grades of paper 
according to customer quality and quantity requirements and delivery deadlines. Efficient 
scheduling of grade changes ensures that customer requirements are met, and that the paper 
machine produces a minimum amount of off grade paper in the process of changing from one 
grade to another. Off grade paper can in many cases not be directly used, but must be 
reprocessed in order to reach sufficient quality. 

Paper grades are defined by various properties, such as ash and moisture content.  

When the production of a paper machine is changed to another grade, a certain amount of time is 
needed to adjust the machine to produce the new grade. Since the paper produced during this 
time often is of no direct use and the production value of the machine is close to zero, there is a 
need for minimizing this period of time. This also defines the optimization problem used in this 
case study.  

This case can be solved using an optimizer. However, to reach a feasible solution for a particular 
paper machine, the solutions need to be verified using simulations, taking into account the 
specifics of the machines involved. 

5.1 Simulation Process       

Let us examine a grade change problem closer with respect to the variables involved. In this 
scenario, three different aspects are considered: 

• Grammage (GM)  – The mass of the paper per square meter (g/m2) 

• Ash Content (AC) – The percentage of inorganics in the paper (%); related to the 
amount of chemical additives such as fillers 

• Moisture Content (MC) – The percentage of moisture in the paper (%) 
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Grammage depends on the end use of the paper and can vary from low values for tissue grades 
to high values for board.  Chemical additives can be used to modify the optical, strength, or 
surface characteristics of the paper.  The moisture content affects both the behavior of the paper 
on the machine, and some properties of the finished product. All three aspects are modeled as 
different quality tubes with constraints. 

5.1.1 Input and Output Parameters 

Here the input parameters of a more specific instance of the above-mentioned case are defined.  
The paper machine is shifting production from the one paper grade described to another. GM is 
changed from 50 g/m2 to 70 g/m2, AC from 10 % to 15 % and MC is only altered during the 
grade change from 5% to 0%. 

The variables in both tables are represented by time series defining the values of each variable at 
every point in time, which can be depicted as in 0. The variation times can also be seen in the 
figure. A constant time step, 10 s, is used. 

t

Q

tcta tb td

GM

AC

MC

 
Figure 3. Variations of variables GM, AC and MC over time 

5.1.2 Parameter Transmission  

Before simulation involving these parameters can be performed according to the DOTS 
middleware model the parameters must be converted into XML format. The actions specified in 
the XML files are executed by the adapter on the Optimizer node.  

First, an XML schema (XSD) must be defined. XSD contains a data format for the time series is 
defined. This root element holds: a) An array of elements having the variable names and types 
from the time series as element names and types, respectively. If exact times at each point in 
time are required, these can be modeled as DateTime attributes for each element in the array. b) 
The time step defined as an integer element. 

The code excerpt below is an example of how an XSD can be defined for the time series in 
Figure 3. Line 5 illustrates point a) and line 6 the point b).   
1. <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 
2.     xmlns:ts="http://mag5.idt.mdh.se/TS" 
3.     targetNamespace="http://mag5.idt.mdh.se/TS"> 
4.  
5.  <xs:element name="Parameters" maxOccurs="1"> 
6.   <xs:sequence> 
7.     <xs:element ref="TimeStep" maxOccurs="1"/> 
8.     <xs:element ref="TimeSeries"/> 
9.   <xs:sequence> 
10.  </xs:element> 
11.  <xs:simpleType name="TimeStep" type="xs:integer"> 
12.  </xs:simpleType>   
13.  <xs:complexType name="TimeSeries"> 
14.    <xs:sequence>  
15.     <xs:element name="GM" type="xs:integer"/>  
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16.     <xs:element name="AC" type="xs:double"/>   
17.     <xs:element name="MC" type="xs:double"/> 
18.   </xs:sequence> 
19.  </xs:complexType> 
20. </xs:schema> 

Once having defined the XSD, different instances if it can be created. An example of an instance 
is the following:  
1. <p:Parameters 
2.   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
3.   xmlns:ts="http://mag5.idt.mdh.se/TS"> 
4.  
5.   <TimeStep>10</TimeStep> 
6.   <TimeSeries> 
7.    <GM>50</GM>   
8.    <AC>10</AC>   
9.   <MC>5</MC>  
10.   </TimeSeries> 
11.   <TimeSeries> 
12.   <GM>50</GM>   
13.   <AC>10</AC>   
14.   <MC>0</MC>  
15.   </TimeSeries> 
16. </p:Parameters>  

This instance will be automatically  packaged in the Body element of a SOAP Envelope, which 
is sent to the Middleware node via Internet. The Envelope also contains the name of the chosen 
simulator. 

5.1.3 Simulation and Output Values 

Before the actual simulator on the node can use the variables and their values, they need to be 
converted from this general format to a format suitable to the simulator at hand. The Middleware 
Component (MC) on the Middleware node, keeping record of locations and input/output formats 
for all available simulators, is responsible for the conversion and re-direction of the simulation 
request.  When the simulation has been performed on the chosen simulator, the return values are 
converted back to the general format, encoded in XML and sent back to the requesting 
Optimizer node by the adapter on the Simulator node. The adapter on the Optimizer node must 
transform these results to the optimizer format, before they can be of any use to the optimizer.  
These actions performed on the output parameters are accomplished according to the same 
principle as the one for the input parameters. 

6 Current State and future work 
So far, the design and implementation of MC together with its database have been completed. 
This implementation also includes an administrative GUI for MC. Moreover, adapters realizing 
connections between the optimizer and MC as well as between MC and a simulator have been 
implemented and added to MC. The optimizer and the simulator mentioned here are Tomlab [9] 
and MATLAB 0, respectively.  

The future works include implementation of more connections of the type described above for 
the rest of the simulators in the DOTS project. In addition, a GUI for adding new simulators 
would further enhance the system. The final goal is to provide an Integrated Development 
Environment (IDE) which will facilitate creation of new data types and protocols and re-use 
already made adapters for particular simulators. 

Finally the entire concept needs an extensive verification: Verification of performance, usability 
and flexibility. In particular a challenge would be to develop u user-friendly development 
environment which will allow non-programmers to specify and developed complex optimization 
processes.  
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7 Conclusion 
In order to realize a truly flexible, extensible and interoperable simulation system, a number of 
challenges such as complex application interfaces, systems running on different platforms and 
other complexity issues need to be addressed. One way of achieving this is by the distributed 
model provided by a middleware solution. The case study shows that the model is feasible, with 
its benefits and limitations.  

The model's interoperability features, extensibility and flexibility concerning both simulators 
and data format are its strengths, while the most concerning issue is its performance; does the 
distributed model increase or in fact decrease overall performance in the system? The problem 
applies to small interpolations, which really do not gain much from the model. On the other 
hand, significant efficiency improvement can be gained if parallel simulations are considered. 
This issue needs further investigation.  

In addition, many of the limitations, such as true platform independence are currently under 
development and will probably not affect the model in the future. Although the development of 
the model still is at an early stage and all its features cannot be fully examined, the model seems 
to be promising. 

From the research point of view the project is of interest for software engineering and simulation 
communities – there is seldom communication between these communities although the results 
of their research and practice can significantly benefit from synergy of their knowledge. 
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