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Abstract

The paper deals with the economic dispatch problem for
a district heating system. The distribution network is
modeled with a number of nodes and arcs, implying that
time delays and restrictions in distribution capacity can
be considered. A solution algorithm for the corresponding
nonlinear optimization problem is proposed. The method
is based on Lagrangian relaxation and exploits the rela-
tions between the optimal Lagrangian multipliers. The
model is implemented and the performance of the algo-
rithm is illustrated with some computational results.

Keywords: Lagrangian relaxation, district heating, eco-
nomic dispatch.

1 Introduction

District heating is a technique used to supply cities with
heat from a common heating system. Both from an eco-
nomical and an environmental point of view, the tech-
nique has in many situations been found superior to other
technologies. This has made district heating common in
many countries, especially in countries with cold winters.

The heat, i.e. the hot water distributed in the district
heating network, is produced in production units of dif-
ferent types, using different types of fuels. There can be
units that are only producing heat, and Combined Heat
and Power (CHP) units, which are units producing both
heat and power. Often the system also includes one or
several heat storages in which it is possible to store heat
for later use. In some systems all production units are
located in the same plant, but more common is that the
units are located at different places in the network.

Typical decisions that must be taken due to the operation

planning are e.g. when to start and stop the production
units, and when to charge and discharge the heat stor-
age. The problem may conceptually be divided into two
subproblems: the unit commitment problem is the prob-
lem to determine when a unit shall be producing or not,
and the economic dispatch problem is to find the optimal
production levels given which units are producing. Typi-
cally a time horizon of one week, partitioned into one-hour
intervals, is considered. The problem has much in com-
mon with the unit commitment and economic dispatch
problems for power systems, which are well described in
the literature [7], [8]. The main difference between the
problem for a power system and a heating system is that
the operation decisions for a district heating system must
take in consideration the time delays in the distribution
network. Since electrical power flows with significantly
higher speed through the power grid, the corresponding
is not relevant in power production planning.

The present paper deals with the economic dispatch prob-
lem for a district heating system. Section 2 defines the
problem as a mathematical optimization problem. In the
traditional way of modeling, see e.g. [1], [2], [3], [6], the
production units are assumed to fulfill a pre-specified heat
demand with heat produced at the same time it is con-
sumed. The heat demand is normally described as one
single demand curve, which implies that time delays, re-
strictions in distribution capacity in the network, and the
fact that the consumers and the production units are lo-
cated at different places in the network, are not handled.
In the model presented in the paper, these features are
considered.

In Section 3 a solution strategy based on Lagrangian re-
laxation is presented. The equations defining the energy
balance at each node are combined with Lagrangian mul-
tipliers and relaxed, implying that the original (primal)
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problem will decompose into a number of smaller sub-
problems that can be solved independently from each
other. However, a dual problem appears and must be
solved.

A solution algorithm for the dual problem is developed in
Section 4. The method exploits the insight that there are
specific relations between the optimal Lagrangian mul-
tipliers. The use of the relations between the multipli-
ers in models for production planning is not new. Ravn
et. al. [2], [5], exploited the relations in an algorithm
for the solution of the economic dispatch problem with
heat storage. Some parts of the algorithms presented in
the present paper are generalizations of these algorithms.
The corresponding was also discussed in [4], where nec-
essary and sufficient optimality conditions for the dual of
a specific version of the unit commitment problem were
developed.

The model is implemented and the performance of the
algorithms are in Section 5 illustrated with some compu-
tational results. Finally, Section 6 gives some concluding
remarks.

2 Economic Dispatch Problem

The district heating network is modeled as a network with
a number of nodes and arcs. The production units and
the consumers supply points are located at the nodes.
The arcs represent possible ways (pipes) to transfer heat.

Let N be the number of nodes defining the district heating
network, let K(n) be the set of production units that
are located at node n, and let I be the number of time
intervals within which the problem is to be solved. The
length of time interval i is τ i hours.

The decision variables of the problem are defined as fol-
lows. First, let qi,k be the heat produced in unit k in time
interval i. The exchange of heat in time interval i between
node n and the remaining network is described with the
variable qn

i,S . Finally, the energy transferred from node n

to node m during time interval i is e
(n,m)
i . There are re-

strictions on the production levels, on the heat exchange
and on the transferred energy, described as the inequality
bounds,

q
i,k

≤ qi,k ≤ qi,k, (1)

qn
i,S

≤ qn
i,S ≤ qn

i,S (2)

and
0 ≤ e

(n,m)
i ≤ e

(n,m)
i , (3)

respectively.

The distribution network is modeled with an energy bal-
ance equation at each node, for each time interval,

qn
i,Sτ i+

N∑
m=1

e
(n,m)
i −

N∑
m=1

η
(m,n)
i e

(m,n)
i−1 = 0, (4)

where η
(m,n)
i is a scalar between zero and one that models

the losses in the network. The initial and final energy
levels are assumed known,{

e
(n,m)
0 = e

(n,m)
0

e
(n,m)
I = e

(n,m)
I ,

(5)

where the parameters e
(n,m)
0 and e

(n,m)
I are the initial

and final energy levels, respectively. We here notice that
the variable e

(n,n)
i represents the energy content in a heat

storage located at node n.

The heat demand that must be fulfilled at node n in time
interval i is ∑

k∈K(n)

qi,k + qn
i,S = qn

i,D. (6)

Here the parameter qn
i,D is the corresponding heat de-

mand.

The cost of producing heat in a production unit is mod-
eled using a second order polynomial,

ci,k =
(
α2

i,k(qi,k)2 + α1
i,kqi,k + α0

i,k

)
τ i, (7)

where the parameters αj
i,k, j = 0, 1, 2, reflect costs for

fuels and taxes, and specifically for CHP units, also the
income for produced and sold electricity. The equation
(7) is defined as strictly convex, i.e. α2

i,k > 0. The cost
associated with the heat exchange qn

i,S is understood as
pumping costs,

cn
i,S = αn

i,S(qn
i,S)2τ i, (8)

where αn
i,S > 0.

To summarize, define the economic dispatch problem as
the following mathematical programming problem,

min
q,e

[
I∑

i=1

N∑
n=1

∑
k∈K(n)

(
α2

i,k(qi,k)2 + α1
i,kqi,k + α0

i,k

)
τ i

+
I∑

i=1

N∑
n=1

αn
i,S(qn

i,S)2τ i

]
s.t. qn

i,Sτ i+
N∑

m=1
e
(n,m)
i −

N∑
m=1

η
(m,n)
i e

(m,n)
i−1 = 0∑

k∈K(n)

qi,k + qn
i,S = qn

i,D

q
i,k

≤ qi,k ≤ qi,k

qn
i,S

≤ qn
i,S ≤ qn

i,S

0 ≤ e
(n,m)
i ≤ e

(n,m)
i

e
(n,m)
0 = e

(n,m)
0

e
(n,m)
I = e

(n,m)
I .

(9)
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In practice the number of variables and constraints in
the problem may be quite large. This, together with the
separable structure of the problem, motivates the use of
solution algorithms based on Lagrangian relaxation.

3 Solution by Lagrangian

Relaxation

Lagrangian relaxation is performed by introducing mul-
tipliers λ = (λ1

1, ..., λ
1
I , ..., λ

N
1 , ..., λN

I ). Combining these
with (4) and adding to the objective in (9) gives the re-
laxed problem,

Φ(λ) =

min
q,e

[
I∑

i=1

N∑
n=1

∑
k∈K(n)

(
α2

i,k(qi,k)2 + α1
i,kqi,k + α0

i,k

)
τ i

+
I∑

i=1

N∑
n=1

αn
i,S(qn

i,S)2τ i+
I∑

i=1

N∑
n=1

λn
i(

qn
i,Sτ i+

N∑
m=1

e
(n,m)
i −

N∑
m=1

η
(m,n)
i e

(m,n)
i−1

)]
s.t.

∑
k∈K(n)

qi,k + qn
i,S = qn

i,D

q
i,k

≤ qi,k ≤ qi,k

qn
i,S

≤ qn
i,S ≤ qn

i,S

0 ≤ e
(n,m)
i ≤ e

(n,m)
i

e
(n,m)
0 = e

(n,m)
0

e
(n,m)
I = e

(n,m)
I ,

(10)
where Φ(λ) is the dual objective function. The corre-
sponding dual problem is

max
λ

[Φ(λ)] . (11)

Relative to (11), the problem (9) is called the primal prob-
lem. From the construction of the dual problem, it is
understood that any value of the dual objective function
defines a lower bound on the optimal function value of the
primal problem. The intention in algorithms based on La-
grangian relaxation is to maximize this lower bound, i.e.
solve the dual problem, and then, given the optimal dual
variables λ∗, derive a solution of the primal problem from
the corresponding solution of the relaxed problem. A so-
lution algorithm for the dual problem (11) is presented in
Section 4. In the remaining of this section, the solution
of the relaxed problem (10) is discussed.

Given a set of dual variables, λ, the relaxed problem (10)
will decompose into a number of independent subprob-
lems, one for each node-interval pair (n, i). The minimiz-
ing q̃i,k, k ∈ K(n), and q̃n

i,S can be found independently

of e
(n,m)
i as the solution to

min
q

[ ∑
k∈K(n)

(
α2

i,k(qi,k)2 + α1
i,kqi,k + α0

i,k

)
+αn

i,S(qn
i,S)2 + λn

i qn
i,S

]
s.t.

∑
k∈K(n)

qi,k + qn
i,S = qn

i,D

q
i,k

≤ qi,k ≤ qi,k

qn
i,S

≤ qn
i,S ≤ qn

i,S ,

(12)

which will be easy to solve, since (12) is a well structured
problem and usually of small dimensions.

The minimizing ẽ
(n,m)
i is given as

if λn
i > λm

i+1η
(n,m)
i+1 then ẽ

(n,m)
i = 0

if λn
i = λm

i+1η
(n,m)
i+1 then 0 ≤ ẽ

(n,m)
i ≤ e

(n,m)
i

if λn
i < λm

i+1η
(n,m)
i+1 then ẽ

(n,m)
i = e

(n,m)
i ,

(13)

where ẽ
(n,m)
i can be chosen arbitrarily between limits as

indicated when λn
i = λm

i+1η
(n,m)
i+1 . The insight that ẽ

(n,m)
i

in the middle option of (13) can be chosen as suited was
for the economic dispatch problem with heat storage ex-
ploited in the algorithms presented in [2], [5]. The corre-
sponding is also considered here, resulting in the following
solution algorithm for the relaxed problem:

Step 1. Compute q̃i,k and q̃n
i,S , k ∈ K(n), n = 1, ..., N ,

i = 1, ..., I, from (12).

Step 2. Choose x
(n,m)
i and x

(n,m)
i , n = 1, ..., N ,

m = 1, ..., N , i = 1, ..., I − 1, as follows:
if λn

i > λm
i+1η

(n,m)
i+1 then

let x
(n,m)
i = x

(n,m)
i = 0

if λn
i < λm

i+1η
(n,m)
i+1 then

let x
(n,m)
i = x

(n,m)
i = e

(n,m)
i

otherwise
let x

(n,m)
i = 0 and x

(n,m)
i = e

(n,m)
i

Step 3. Compute ẽ
(n,m)
i , n = 1, ..., N , m = 1, ..., N ,

i = 1, ..., I, from (14).

First, in Step 1, problem (12) is solved for each node and
time interval. In Step 2 the parameters x

(n,m)
i and x

(n,m)
i

are chosen in accordance with (13). The parameter x
(n,m)
i

is defined as the lower bound on ẽ
(n,m)
i that is relevant

for the current dual variables λ. Similarly x
(n,m)
i defines

the upper bound. Finally, in Step 3, the variables ẽ
(n,m)
i

are chosen to fulfill (4) as closely as possible within the
limits posed by (12) and (13). This is achieved by solving
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the linear programming problem,

min
e,s

[
I∑

i=1

N∑
n=1

(
s+

i,n + s−i,n
)]

s.t. q̃n
i,Sτ i+

N∑
m=1

e
(n,m)
i −

N∑
m=1

η
(m,n)
i e

(m,n)
i−1 = s+

i,n − s−i,n

x
(n,m)
i ≤ e

(n,m)
i ≤ x

(n,m)
i

e
(n,m)
0 = e

(n,m)
0

e
(n,m)
I = e

(n,m)
I

s+
i,n ≥ 0

s−i,n ≥ 0.

(14)
Here s+

i,n and s−i,n are slack variables.

4 Solving the Dual Problem

Since the dual problem (11) is non-smooth, solution meth-
ods for non-smooth optimization [9] must be used. To
this group of methods belong e.g. subgradient methods
and bundle methods. However, these are general meth-
ods aimed for generally defined problems. The solution
methodology presented in this section is suited to the cur-
rent problem structure. The algorithm is based on the in-
sight that there are specific relations between the optimal
Lagrangian multipliers (i.e. the dual variables).

The subgradient method is a simple and intuitive method
for non-smooth optimization. In each iteration v of the
algorithm, a new set of dual variables, [λ]v+1, is computed
from the previous one, [λ]v, by performing a subgradient
step,

[λ]v+1 = [λ]v + αvg. (15)

Here g is a subgradient and αv > 0 is a step length. The
components gn

i of the subgradients are for problem (11)
computed as

gn
i = q̃n

i,Sτ i+
N∑

m=1

ẽ
(n,m)
i −

N∑
m=1

η
(m,n)
i ẽ

(m,n)
i−1 , (16)

where q̃n
i,S and ẽ

(n,m)
i , m = 1, ..., N , are part of the current

solution of the relaxed problem. The sequence of αv is
chosen such that [λ]v converges to λ∗ when v increases.
Such sequences can be defined rather easily, however, the
corresponding convergence of [λ]v towards λ∗ may be very
slow.

From the interpretation of the Lagrangian multipliers, the
conclusion is that when e

(n,m)
i > 0 the two multipliers λn

i

and λm
i+1 are related. The relations are summarized as

follows. The multiplier λn
i is interpreted as the marginal

cost of the energy transferred from node n during time
interval i. Assuming no losses, i.e. η

(m,n)
i = 1 in (4), and

that e
(n,m)
i is not on its bounds, i.e. 0 < e

(n,m)
i < e

(n,m)
i ,

the marginal costs at node n in time interval i and at node
m in time interval i + 1 must be equal. If they were not,
and if the marginal cost was lower at node n than at node
m, it would be more economical to increase the amount
of energy sent from node n to m. Correspondingly, if the
marginal cost was higher at node n, it should be more
economical to decrease the amount of energy sent. Con-
cerning losses and the energy transfer bounds will give
the conditions already stated in (13). In particular (13)
implies that when e

(n,m)
i = 0, then λn

i > λm
i+1η

(n,m)
i+1 , and

when e
(n,m)
i = e

(n,m)
i , then λn

i < λm
i+1η

(n,m)
i+1 .

By exploiting the relations between the optimal multipli-
ers we define an algorithm, referred to as the Backwards
Sequential Projection Algorithm:

Step 1. Given a step length αv > 0. Compute
[λn

I ]v+1 = [λn
I ]v + αvgn

I , n = 1, ..., N .

Step 2. Perform Step 3 for i = I − 1, ..., 1.

Step 3. Perform steps 4 to 7 for n = 1, ..., N .

Step 4. Compute dn
i = [λn

i ]v + αvgn
i .

Step 5. If gn
i > 0 then

let [λn
i ]v+1 = min

{
dn

i , min
m∈M

{[
λm

i+1η
(n,m)
i+1

]v+1
}}

where M =

m :
[λn

i ]v <
[
λm

i+1η
(n,m)
i+1

]v+1

and e
(n,m)
i > 0

 .

Step 6. If gn
i < 0 then

let [λn
i ]v+1 = max

{
dn

i , max
m∈M

{[
λm

i+1η
(n,m)
i+1

]v+1
}}

where M =

m :
[λn

i ]v >
[
λm

i+1η
(n,m)
i+1

]v+1

and e
(n,m)
i > 0

 .

Step 7. If gn
i = 0 then compute [λn

i ]v+1 as follows:

Let M =

{
m :

[λn
i ]v =

[
λm

i+1η
(n,m)
i+1

]v

and e
(n,m)
i > 0

}
.

if |M | = 0 then
let [λn

i ]v+1 = [λn
i ]v

otherwise

let [λn
i ]v+1 =

∑
m∈M

[
λm

i+1η
(n,m)
i+1

]v+1

|M |

The algorithm is a generalization of the Backwards Se-
quential Projection Algorithm for the economic dispatch
problem with heat storage developed by Ravn et. el. [2],
[5]. As in the subgradient method, a suitable sequence of
the step length αv is chosen for Step 1. Ordinary sub-
gradient steps are performed for the dual variables corre-
sponding to time interval I. For the remaining variables,
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i,D
3  = 0
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4  = 0 q

i,D
5  > 0 q

i,D
6  = 0

Arc with
limiting
capacity

Figure 1: The network model.

the step length is restricted by the relations with the mul-
tipliers in consecutive nodes.

When the constraint (3) is identified as nonbinding
and thereby is assumed to hold with strict inequalities,
the relation λn

i = λm
i+1η

(n,m)
i+1 can be substituted di-

rectly into the relaxed problem (10). The identification
may be achieved by using a tolerance ε > 0. When∥∥∥[λn

i ]v −
[
λm

i+1η
(n,m)
i+1

]v∥∥∥ < ε is found to hold during a
number of iterations, the relation is substituted for the
relevant n, m and i. This implies that either λn

i or λm
i+1

is eliminated from the relaxed problem. When λn
i is elim-

inated, the subgradient associated to λm
i+1 is computed as

g̃m
i+1 =

(
gn

i η
(n,m)
i+1 + gm

i+1

)
, (17)

where gn
i and gm

i+1 as before are computed from (16). Cor-
respondingly, when λm

i+1 is eliminated from the problem,
the subgradient associated to λn

i is computed as

g̃n
i =

(
gn

i +
gm

i+1

η
(n,m)
i+1

)
. (18)

We here notice that the substitution indeed may improve
the algorithm, but an incorrect identification will also
force the algorithm to converge to a non-optimal solu-
tion. The remedy here may be to during iterations also
try to identify incorrectly defined nonbinding constraints.

5 Computational Results

This section illustrates the performance of the algorithms
developed in Section 3 and 4. The input data used
are derived from a district heating system in the region
of Stockholm, Sweden. The model of the distribution

network, illustrated in Figure 1, consists of six nodes,
N = 6. The problem is solved over a time horizon of 24
hours, partitioned into half-hour intervals, i.e. I = 48
and τ i = 0.5, i = 1, ..., I. The system includes in to-
tal ten production units: three located at node one and
four, respectively, and one located at each of the nodes
two, three, five and six, i.e. |K(1)| = |K(4)| = 3 and
|K(2)| = |K(3)| = |K(5)| = |K(6)| = 1. Of the ten units,
two are aimed for base load production. These are lo-
cated at the nodes one and four. The production units
at the nodes three and six are mainly used in peak load
situations. No heat demands are defined at the nodes
one, three, four and six, q1

i,D = q3
i,D = q4

i,D = q6
i,D = 0,

i = 1, ..., I. The demands at node two and five, i.e. q2
i,D

and q5
i,D, are during the planning horizon varying between

85 and 150 MW. Arc (2, 5) has a limiting energy transfer
capacity of 20 MW, i.e. e

(2,5)
i = 20, i = 1, ..., I.

First ten initial iterations are performed by an ordinary
subgradient method, cf. (15), and thereafter, the algo-
rithm starts to use the Backwards Sequential Projection
Algorithm to update the Lagrangian multipliers. From
iteration 100 the version of the algorithm that identifies
nonbinding inequalities and substitute the corresponding
relation λn

i = λm
i+1η

(n,m)
i+1 into the relaxed problem is ap-

plied. Here a tolerance ε = 0.5 is used.

The step length αv is defined by

αv = ξv Φ∗ − Φ([λ]v)
‖[g]v‖ , (19)

where Φ∗ is the optimal dual objective. Equation (19) is
known as Polyak rule II, which has proven to give robust
results, see e.g. [9]. The choice for the sequence ξv is to
start with ξv = 1 and then reduce ξv with a factor of two
whenever Φ([λ]v) has failed to increase in three iterations.
In practice the optimal dual objective is unknown, and
therefore normally a known upper bound of Φ∗ is used
instead. The dual objective for the first 200 iterations of
the Backwards Sequential Projection Algorithm (Method
1) are shown in Figure 2. For illustrating purposes, the
figure also shows the dual objective using the subgradient
method not applying the Backwards Sequential Projec-
tion Algorithm (Method 2). From the figure we see that
the pure subgradient method converges very slowly to-
wards optimum. Since the relation λn

i = λm
i+1η

(n,m)
i+1 will

hold at the optimum for many of the dual variables, and
a pure subgradient step in the dual variables not likely
will match the condition exactly, the very slow conver-
gence of the subgradient method is not unexpected. The
Backwards Sequential Projection Algorithm, on the other
hand, shows a better performance, especially when the
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Figure 2: Dual objective during iterations using two dif-
ferent methods to compute [λ]v+1.

substitution procedure is applied at iteration 100.

From the calculations we see that the new method
(Method 1) solves the dual problem. We also see that
the solution to the corresponding relaxed problem fulfills
(4), which implies that the relaxed solution is an optimal
solution of the primal problem.

A deeper analysis of the results verifies the relations be-
tween the optimal dual variables. Only in two time in-
tervals the upper bound e

(2,5)
i = 20 is restricting, which

implies that λn
i < λm

i+1η
(n,m)
i+1 holds for the current i, n

and m. At most other arcs, (m,n), the condition (3) is
not limiting. In applications, heuristics may be used to
identify at least some of these nonbinding conditions. The
operators in the control rooms of the district heating sys-
tems often know which arcs (pipes) in the network that
are not limiting.

6 Conclusions

The economic dispatch problem for a district heating sys-
tem was considered and formulated as a mathematical
nonlinear optimization problem. Contrary the traditional
way of modelling, time delays and restrictions in distribu-
tion capacity in the network are considered. A solution
algorithm bases on Lagrangian relaxation was proposed.
The algorithm exploits the insight that there must be
specific relations between the optimal Lagrangian multi-
pliers. This was also verified with a numerical example.
The relations are exploited both in the solution of the re-
laxed problem and in the updating of the multipliers. The
computational results also indicate that the new method

is superior the pure subgradient method aimed for general
non-smooth optimization.
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